Skip to main content
Log in

Elastic Evaluation of Poly(Lactic Acid) Electrospun Membranes Using the Pulsed Photoacoustic Technique

  • CPPTA3
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Fibrous membranes manufactured by electrospinning possess unique features such as a high porosity and large specific surface area, making them suitable for applications in tissue engineering. However, the determination of their mechanical behavior under different loading conditions remains one of the most difficult technical problems for researchers to overcome. While the tensile properties of this kind of membrane are commonly reported in the literature, few explorations of their properties in other directions have been reported. In this paper, the pulsed photoacoustic technique is employed to obtain the elastic constants of electrospun non-woven membranes, specifically in two directions (LT). The electrospun samples are hybrid fiber membranes of poly(lactic acid) and hydroxyapatite (HA) nanoparticles at different concentrations. It is found that the concentration of HA nanoparticles determines the mechanical response of the membrane, where the nanoparticles act either as a reinforcement or as a mesh defect. The elastic constants (\(E_{L}, E_{T}, G_{L}, G_{T}, v_{L}\), \(\nu _{T}\)) are obtained through velocity waves related to the stress–strain equations, using samples with two different geometries and considering the electrospinning mats as a transversely isotropic material. These values are compared to those acquired using macro-tensile testing equipment according to the ASTM D1708 standard.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L.S. Nair, C.T. Laurencin, Prog. Polym. Sci. 32, 762 (2007)

    Article  Google Scholar 

  2. M. Yao, H. Deng, F. Mai, K. Wang, Q. Zhang, F. Chen, Q. Fu, Express Polym. Lett. 5, 937 (2011)

    Article  Google Scholar 

  3. B. Gupta, N. Revagade, J. Hilborn, Prog. Polym. Sci. 32, 455 (2007)

    Article  Google Scholar 

  4. V. Beachley, X. Wen, Prog. Polym. Sci. 35, 868 (2010)

    Article  Google Scholar 

  5. H. Zheng-Ming, Y.-Z. Zhang, M. Kotaki, S. Ramakrishna, Compos. Sci. Technol. 63, 2223 (2003)

    Article  Google Scholar 

  6. J. Zeleny, Phys. Rev. 10, 1 (1917)

    Article  ADS  Google Scholar 

  7. C. Wang, H.S. Chien, K.W. Yan, C.L. Hung, K.L. Hung, S.J. Tsai, Polymer 50, 6100 (2009)

    Article  Google Scholar 

  8. P.P. Molamma, J. Venugopal, S. Ramakrishna, Acta Biomater. 5, 2884 (2009)

    Article  Google Scholar 

  9. G. Sui, X. Yang, F. Mei, X. Hu, G. Chen, X. Deng, S. Ryu, J. Biomed. Mater. Res. A 82, 445 (2006)

    Google Scholar 

  10. J.H. Chang, Y.U. An, D. Cho, E.P. Ginnelis, Polymer 44, 3715 (2003)

    Article  Google Scholar 

  11. C.L. Pai, M.C. Boyse, G.C. Rutledge, Polymer 52, 2295 (2011)

    Article  Google Scholar 

  12. F. Croisier, A.-S. Duwez, C. Jérome, A.F. Leonard, K.O. van der Werf, P.J. Dijkstra, M.L. Bennink, Acta Biomater. 8, 218 (2012)

    Article  Google Scholar 

  13. J.J. Liao, T.-B. Hu, C.-W. Chang, Int. J. Rock Mech. Min. Sci. 34, 1045 (1997)

    Article  Google Scholar 

  14. T.D. Rossing, D.A. Russell, Am. J. Phys. 58, 1153 (1990)

    Article  ADS  Google Scholar 

  15. M. Navarrete, M. Villagrán, Rev. Sci. Instrum. 74, 479 (2003)

    Article  ADS  Google Scholar 

  16. M. Navarrete, R. Vera-Graziano, J. Pineda, J. Appl. Polym. Sci. 111, 1199 (2009)

    Article  Google Scholar 

  17. M. Navarrete, F. Serranía, M. Villagrán, J. Bravo, R. Guinovart, R. Rodríguez, Mech. Adv. Mater. Struct. 9, 157 (2002)

    Article  Google Scholar 

  18. E.H. Kerner, Proc. Phys. Soc. B 69, 808 (1956)

    Article  ADS  Google Scholar 

  19. W.M. Madigosky, R.W. Harrison, K.P. Scharnhorst, Polym. Mater. Sci. Eng. 60, 489 (1989)

    Google Scholar 

  20. R.L. Kligman, W.M. Madigosky, J.R. Barlow, J. Acoust. Soc. Am. 70, 1437 (1981)

    Article  ADS  Google Scholar 

  21. C.B. Scruby, L.E. Drain, in Laser Ultrasonics: Techniques and Applications, ed. by C.B. Scruby, L.E Drain (Hilger, Neew York, 1990)

  22. ASTM D1708-10, Standard test method for tensile properties of plastics by use of microtensile specimen. ASTM 08.01 Plastics (I): D256–D3159 (2011)

Download references

Acknowledgements

This work was supported by DGAPA-PAPIIT-UNAM under Grants IN106515, IN105117 and IN108116 as well by II-UNAM under Grant 6593.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Navarrete.

Additional information

Selected papers from Third Conference on Photoacoustic and Photothermal Theory and Applications.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarrete, M., Vera-Graziano, R., Maciel-Cerda, A. et al. Elastic Evaluation of Poly(Lactic Acid) Electrospun Membranes Using the Pulsed Photoacoustic Technique. Int J Thermophys 38, 121 (2017). https://doi.org/10.1007/s10765-017-2251-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-017-2251-5

Keywords

Navigation