Skip to main content
Log in

Comparative Study of Two InGaAs-Based Reference Radiation Thermometers

  • TEMPMEKO 2016
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

More than one decade ago, an InGaAs detector-based transfer standard infrared radiation thermometer working in the temperature range from \(150\,{^{\circ }}\hbox {C}\) to \(1100\,{^{\circ }}\hbox {C}\) was built at TUBITAK UME in the scope of collaboration with IMGC (INRIM since 2006). During this timescale, the radiation thermometer was used for the dissemination of the radiation temperature scale below the silver fixed-point temperature. Recently, a new radiation thermometer with the same design but with different spectral responsivity was constructed and employed in the laboratory. In this work, we present the comparative study of these thermometers. Furthermore, the paper describes the measurement results of the thermometer’s main characteristics such as the size-of-source effect, spectral responsivity, gain ratio, and linearity. Besides, both thermometers were calibrated at the freezing temperatures of indium, tin, zinc, aluminum, and copper reference fixed-point blackbodies. The main study is focused on the impact of the spectral responsivity of thermometers on the interpolation parameters of the Sakuma–Hattori equation. Furthermore, the calibration results and the uncertainty sources are discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Battuello, F. Lanza, T. Ricolfi, Metrologia 27, 75 (1990)

    Article  ADS  Google Scholar 

  2. F. Sakuma, S. Hattori, in Temperature: Its Measurement and Control in Science and Industry, vol. 5, ed. by J.F. Schooley. AIP Conference Proceedings (New York, 1982). pp. 421–427

  3. H.W. Yoon, C.E. Gibson, V. Khromchenko, G.P. Eppeldauer, Int. J. Thermophys. 28, 2076 (2007)

    Article  ADS  Google Scholar 

  4. X.P. Hao, H.C. McEvoy, G. Machin, Z.D. Yuan, T.J. Wang, Meas. Sci. Technol. 24, 075004 (2013)

    Article  ADS  Google Scholar 

  5. F. Girard, T. Ricolfi, in Proceedings of TEMPMEKO 2004, 9th International Symposium on Temperature and Thermal Measurements in Industry and Science (Dubrovnik, Croatia, 2004), pp. 827–732

  6. M. Battuello, F. Girard, T. Ricolfi, in Temperature: Its Measurement and Control in Science and Industry, vol. 7, ed. by D.C. Ripple. AIP Conference Proceedings (Chicago, 2002). pp. 903–908

  7. T. Ricolfi, F. Girard, in Proceedings of TEMPMEKO 1999, 7th International Symposium on Temperature and Thermal Measurements in Industry and Science (Delft, 1999), pp. 593–598

  8. G. Machin, R.Sergienko, in Proceedings of TEMPMEKO 2001, 8th International Symposium on Temperature and Thermal Measurements in Industry and Science (VDE Verlag, Berlin, 2002), pp. 155–160

  9. F. Sakuma, L. Ma, Z. Yuan, in Proceedings of TEMPMEKO 2001, 8th International Symposium on Temperature and Thermal Measurements in Industry and Science (VDE Verlag, Berlin, 2002), pp. 161-166

  10. M. Battuello, P. Bloembergen, F. Girard, T. Ricolfi, AIP Conf. Proc. 684, 613 (2003)

    Article  ADS  Google Scholar 

  11. D.J. Shin, D.H. Lee, C.W. Park, S.N. Park, Metrologia 42, 154 (2005)

    Article  ADS  Google Scholar 

  12. D.J. Shin, S. Park, K.L. Jeong, S.N. Park, D.H. Lee, Metrologia 51, 25 (2014)

    Article  ADS  Google Scholar 

  13. H. Nasibov, E. Balaban, A. Kholmatov, A. Nasibov, Flow Meas. Instrum. 37, 12 (2014)

    Article  Google Scholar 

  14. W. Dong, Z. Yuan, P. Bloembergen, X. Lu, Y. Duan, Int. J. Thermophys. 32, 2587 (2011)

    Article  ADS  Google Scholar 

  15. P. Corredera, M.L. Hernanz, M. Gonzales-Herraez, J. Campos, Metrologia 40, S150 (2003)

    Article  Google Scholar 

  16. D.J. Shin, D.H. Lee, G.R. Jeong, Y.J. Cho, S.N. Park, I.W. Lee, in Proceedings of NEWRAD 2005, 9th International Conference on New Developments and Applications in Optical Radiometry (Davos, 2005), pp. 77–78

  17. H.W. Yoon, J.J. Butler, T.C. Larason, G.P. Eppeldauer, Metrologia 40, S154 (2003)

    Article  ADS  Google Scholar 

  18. H. Nasibov, S.Ugur, in Proceedings of IMEKO 2003, 17th World Congress Metrology in the 3rd Millennium (Dubrovnik, Croati, 2003), pp. 1702–1705

  19. F. Girard, T. Ricolfi, Meas. Sci. Technol. 9, 1215–1218 (1998)

    Article  ADS  Google Scholar 

  20. A. Diril, H. Nasibov, S. Ugur, in Temperature: Its Measurement and Control in Science and Industry, vol. 7, ed. by D.C. Ripple. AIP Conference Proceedings (Chicago, 2002)

  21. P. Saunders, D.R. White, Metrologia 41, 41 (2004)

    Article  ADS  Google Scholar 

  22. P. Saunders, D.R. White, Metrologia 40, 195 (2003)

    Article  ADS  Google Scholar 

  23. P. Saunders et al., Int. J. Thermophys. 29, 1066 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for useful comments and constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Nasibov.

Additional information

Selected Papers of the 13th International Symposium on Temperature, Humidity, Moisture and Thermal Measurements in Industry and Science.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasibov, H., Diril, A., Pehlivan, O. et al. Comparative Study of Two InGaAs-Based Reference Radiation Thermometers. Int J Thermophys 38, 112 (2017). https://doi.org/10.1007/s10765-017-2245-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-017-2245-3

Keywords

Navigation