Skip to main content
Log in

Volumetric Properties of Lithium–Lead Melts

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The density of liquid lithium and lithium–lead alloys (10.02 at.% Pb, 14.98 at.% Pb, 18.06 at.% Pb, 20.02 at.% Pb, 22.24 at.% Pb, 23.09 at.% Pb, 25.10 at.% Pb, 30.15 at.% Pb, 38.21 at.% Pb, 40.11 at.% Pb, 43.08 at.% Pb, 46.65 at.% Pb, 50.15 at.% Pb, 60.23 at.% Pb, 70.01 at.% Pb, 83.00 at.% Pb, and 84.30 at.% Pb) has been measured using the gamma-ray attenuation technique over the temperature range from the liquidus line to 1050 K. The position of the liquidus curve in the Li–Pb phase diagram has been clarified. The compositional dependencies of molar volume and volumetric thermal expansion coefficient of the Li–Pb liquid system have been constructed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.J. Holroyd, J.T.D. Mitchell, Nucl. Eng. Des. Fusion 1, 17 (1984)

    Article  Google Scholar 

  2. S. Malang, A.R. Raffray, N.B. Morley, Fusion Eng. Des. 84, 2145 (2009)

    Article  Google Scholar 

  3. E. Mas de les Valls, L.A. Sedano, L. Batet, I. Ricapito, A. Aiello, O. Gastaldi, F. Gabriel, J. Nucl. Mater. 376, 353 (2008)

    Article  ADS  Google Scholar 

  4. G. Grube, H. Klaiber, Z. Elektrochem, Angew. Phys. Chem. 40, 745 (1934)

    Google Scholar 

  5. B. Schulz, Fusion Eng. Des. 14, 199 (1991)

    Article  Google Scholar 

  6. B.B. Alchagirov, A.G. Mozgovoi, T.M. Taova, T.A. Sizhazhev, Perspekt. Mater. 6, 35 (2005)

    Google Scholar 

  7. S.V. Stankus, R.A. Khairulin, A.G. Mozgovoi, High Temp. 44, 829 (2006)

    Article  Google Scholar 

  8. J. Saar, H. Ruppersberg, J. Phys. F Met. Phys. 17, 305 (1987)

    Article  ADS  Google Scholar 

  9. M.-L. Saboungi, J. Marr, M. Blander, J. Chem. Phys. 68, 1375 (1978)

    Article  ADS  Google Scholar 

  10. V.T. Nguyen, J.E. Enderby, Philos. Mag. 35, 1013 (1977)

    Article  ADS  Google Scholar 

  11. M.-L. Saboungi, W. Geertsma, D.L. Price, Annu. Rev. Phys. Chem. 41, 207 (1990)

    Article  ADS  Google Scholar 

  12. W. van der Lugt, J. Phys. Condens. Matter 8, 6115 (1996)

    Article  ADS  Google Scholar 

  13. H. Ruppersberg, H. Reiter, J. Phys. F Met. Phys. 12, 1311 (1982)

    Article  ADS  Google Scholar 

  14. R.A. Khairulin, S.V. Stankus, A.S. Kosheleva, High Temp. 46, 212 (2008)

    Article  Google Scholar 

  15. S.V. Stankus, R.A. Khairulin, Thermochim. Acta 474, 52 (2008)

    Article  Google Scholar 

  16. S.V. Stankus, R.A. Khairulin, P.S. Popel, The Technique of Experimental Determination of the Density of Solid and Liquid Materials by a Gamma-Method. GSSSD ME 206–2013 (Standartinform, Moscow, 2013). [in Russian]

    Google Scholar 

  17. S.V. Stankus, R.A. Khairulin, High Temp. 37, 194 (1999)

    Google Scholar 

  18. K.A. Yakimovich, A.G. Mozgovoi, High Temp. 38, 657 (2000)

    Article  Google Scholar 

  19. E.E. Shpil’rain, K.A. Yakimovich, E.E. Totskii, D.L. Timrot, V.A. Fomin, Thermophysical Properties of Alkaline Metals (Standards Publishing, Moscow, 1970). [in Russian]

    Google Scholar 

  20. H. Okamoto, J. Phase Equilib. 14, 770 (1993)

    Google Scholar 

  21. P. Hubberstey, T. Sample, M.G. Barker, J. Nucl. Mater. 191–194, 283 (1992)

    ADS  Google Scholar 

  22. S.V. Stankus, R.A. Khairulin, High Temp. 44, 389 (2006)

    Article  Google Scholar 

  23. W.J. Howell, C.T. Lira, C.A. Eckert, AIChE J. 34, 1477 (1988)

    Article  Google Scholar 

  24. V.F. Gantmakher, Phys. Usp. 45, 1165 (2002)

    Article  ADS  Google Scholar 

  25. J.R. Franz, F. Brouers, C. Holzhey, J. Phys. F Met. Phys. 12, 2611 (1982)

    Article  ADS  Google Scholar 

  26. R.A. Khairulin, S.V. Stankus, R.N. Abdullaev, High Temp. High Press. 42, 493 (2013)

    Google Scholar 

Download references

Acknowledgements

We gratefully thank the Russian Foundation for Basic Research (Grant No. 15-08-00275) for providing partial financial support for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Khairulin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khairulin, R.A., Abdullaev, R.N., Stankus, S.V. et al. Volumetric Properties of Lithium–Lead Melts. Int J Thermophys 38, 23 (2017). https://doi.org/10.1007/s10765-016-2165-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-016-2165-7

Keywords

Navigation