Skip to main content
Log in

Evidence for Argon Content in Pure Oxygen from Thermal Data

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Since many years it is known that argon impurities in oxygen change the temperature of the oxygen triple point by \(+12 \hbox { K}{\cdot }\mathrm{mol}^{-1}\) (positive, while most impurities decrease the temperature) without any effect on the melting range of this transition, for the impurity concentrations usually encountered in nominally pure gases. It has been hypothesized that thermal measurements on the \(\alpha -\beta \) solid-to-solid transition at 23.8 K or the \(\beta -\gamma \) solid-to-solid transition at 43.8 K may give reliable evidence regarding the argon content. However, such measurements require very long times for full completion of each transition (with prohibitive costs if liquid helium is used) and for the \(\alpha -\beta \) solid-to-solid transition the heat pulse method cannot be applied reliably. The availability of closed-cycle refrigerators permits the first obstacle to be surmounted. The automatic system earlier developed at INRIM during the EU Multicells project and used extensively for the project on the isotopic effect in neon is perfectly suited for such measurements. Thus, the uncertainties of the temperature measurements are similar to those obtained previously (of the order of 0.1 mK or less). Three argon-in-oxygen mixtures were prepared gravimetrically and certified at KRISS, just as was previously done for the work on the neon isotopic compositions. Results of continuous-current measurements on the \(\alpha -\beta \) solid-to-solid transition, along with the triple-point data obtained with the heat pulse method, are presented for one cell with a known doped argon content, to be compared with similar data from a cell with oxygen of very high purity. In addition, some preliminary data for the \(\beta -\gamma \) solid-to-solid transition are given. The measurements on the mixture with the highest argon content, about \(1002\, \upmu \hbox {mol}{\cdot } \mathrm{mol}^{-1}\), imply a (linear) sensitivity of \((116 \pm 7) \hbox {K}{\cdot }\mathrm{mol}^{-1}\) for the \(\alpha -\beta \) transition. This sensitivity may be different at much lower argon contents, and follow-up measurements with the other (smaller) mixtures will shed light on the linearity of this dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Eucken, Verh. Dtsch. Phys. Ges. 18, 4 (1916)

    Google Scholar 

  2. H.J. Hoge, J. Res. Natl. Bur. Stand. 44, 321 (1950)

    Article  Google Scholar 

  3. M.P. Orlova, in Temperature, Its Measurement and Control in Science and Industry, vol. 3, ed. by C.M. Herzfeld (Reinhold, New York, 1962), pp. 179–184

  4. R. Muijlwijk, M. Durieux, H. van Dijk, Physica 43, 475 (1969)

    Article  ADS  Google Scholar 

  5. W.R.G. Kemp, C.P. Pickup, in Temperature, Its Measurement and Control in Science and Industry, vol. 4, ed. by H.H. Plumb (Instrument Society of America, Pittsburgh, 1972). pp. 217–224

  6. J. Ancsin, in Temperature Measurement 1975, Institute of Physics Conf. Series No. 26 (1975), pp. 57–64

  7. E.L. Pace, R.L. Bivens, J. Chem. Phys. 53, 748 (1970)

    Article  ADS  Google Scholar 

  8. J. Cowan, R.C. Kemp, W.R.G. Kemp, Metrologia 12, 87 (1976)

    Article  ADS  Google Scholar 

  9. K.H. Kang, K.H. Kim, B.J. Kim, M.J. Kim, C. Rhee, in Proceedings Tempmeko’96, ed. by P. Marcarino (Levrotto & Bella, Torino, 1997), pp. 101–104

  10. K.H. Kang, C.H. Song, Y.G. Kim, K.S. Gam (KRISS), U.S. Patent US006324894B1—Device and method for measuring argon impurity by utilizing the triple point and the \(\gamma -\beta \) transition temperatures of oxygen (2001)

  11. L. Lipinski, A. Szmyrka-Grzebyk, H. Manuszkiewicz, Cryogenics 36, 921 (1996)

    Article  ADS  Google Scholar 

  12. L. Lipinski, A. Szmyrka-Grzebyk, H. Manuszkiewicz, P.P.M. Steur, F. Pavese, in Proceedings Tempmeko’96, ed. by P. Marcarino (Levrotto & Bella, Torino, 1997), pp. 105–109

  13. A. Szmyrka-Grzebyk, L. Lipinski, H. Manuszkiewicz, J. Low Temp. Phys. 111, 399 (1998)

    Article  ADS  Google Scholar 

  14. L. Lipinski, A. Kowal, A. Szmyrka-Grzebyk, H. Manuszkiewicz, P.P.M. Steur, I. Peroni, F. Sparasci, F. Pavese, 2nd International Seminar and Workshop on Low Temperature Thermometry, Wroclaw, Poland (2003), pp. 119–126

  15. A. Szmyrka-Grzebyk, A. Kowal, L. Lipinski, H. Manuszkiewicz, P.P.M. Steur, F. Pavese, AIP Conf. Proc. 1552, 204–208 (2013). doi:10.1063/1.4819540

    Article  ADS  Google Scholar 

  16. R. LeSar, R.D. Etters, Phys. Rev. B 37, 5364 (1988)

    Article  ADS  Google Scholar 

  17. B. Kuchta, T. Luty, R.J. Meier, J. Phys. C Solid State Phys. 20, 585 (1987)

    Article  ADS  Google Scholar 

  18. C.S. Barrett, L. Meyer, J. Wasserman, Phys. Rev. 163, 851 (1967)

    Article  ADS  Google Scholar 

  19. F. Pavese, D. Ferri, Adv. Cryog. Engine 33, 1039 (1988)

    Google Scholar 

  20. Yu.A. Freiman, H.J. Jodl, Phys. Rep. 401, 1–228 (2004)

  21. F. Pavese, Metrologia 46, 47 (2009)

    Article  ADS  Google Scholar 

  22. P.P.M. Steur, J.S. Kim, D. Giraudi, F. Pavese, J. Chem. Thermodyn. 60, 87 (2013). doi:10.1016/j.jct.2013.01.011

    Article  Google Scholar 

  23. I. Yang, J.B. Lee, D.M. Moon, J.S. Kim, Preparation of primary reference material of argon in oxygen by the gravimetric method for application to thermometry. Metrologia (submitted to)

  24. F. Pavese, D. Ferri, I. Peroni, A. Pugliese, P.P.M. Steur, B. Fellmuth, D.I. Head, L. Lipinski, A. Peruzzi, A. Szmyrka-Grzebyk, L. Wolber, AIP Conf. Proc. 684, 173–178 (2003)

    Article  ADS  Google Scholar 

  25. F. Pavese, P.P.M. Steur, N. Bancone, D. Ferri, D. Giraudi, Metrologia 47, 499 (2010)

    Article  ADS  Google Scholar 

  26. B. Fellmuth, P. Seifert, H. Rudloff, in Proceedings Tempmeko’96, ed. by P. Marcarino (Levrotto & Bella, Torino, 1997), pp. 93–98

  27. A.G. Steele, B. Fellmuth, D.I. Head, Y. Hermier, K.H. Kang, P.P.M. Steur, W.L. Tew, Metrologia 39, 551–571 (2002)

    Article  ADS  Google Scholar 

  28. K.D. Hill, T. Nakano, P. Steur, Metrologia 52, 03003 (2015). Tech Suppl

    Article  ADS  Google Scholar 

  29. B. Fellmuth, K.D. Hill, J.V. Pearce, A. Peruzzi, P.P.M. Steur, J. Zhang (2015), http://www.bipm.org/en/committees/cc/cct/publications-cc.html#thermometry-guides and http://www.bipm.org/utils/common/pdf/ITS-90/Guide-ITS-90-Impurities-2015.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter P. M. Steur.

Additional information

F. Pavese: Affiliated Scientist (2010–2015).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steur, P.P.M., Yang, I. & Pavese, F. Evidence for Argon Content in Pure Oxygen from Thermal Data. Int J Thermophys 38, 20 (2017). https://doi.org/10.1007/s10765-016-2160-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-016-2160-z

Keywords

Navigation