Skip to main content

Advertisement

Log in

Computational Fluid Dynamics Analysis on Radiation Error of Surface Air Temperature Measurement

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Due to solar radiation effect, current air temperature sensors inside a naturally ventilated radiation shield may produce a measurement error that is 0.8 K or higher. To improve air temperature observation accuracy and correct historical temperature of weather stations, a radiation error correction method is proposed. The correction method is based on a computational fluid dynamics (CFD) method and a genetic algorithm (GA) method. The CFD method is implemented to obtain the radiation error of the naturally ventilated radiation shield under various environmental conditions. Then, a radiation error correction equation is obtained by fitting the CFD results using the GA method. To verify the performance of the correction equation, the naturally ventilated radiation shield and an aspirated temperature measurement platform are characterized in the same environment to conduct the intercomparison. The aspirated temperature measurement platform serves as an air temperature reference. The mean radiation error given by the intercomparison experiments is 0.23 K, and the mean radiation error given by the correction equation is 0.2 K. This radiation error correction method allows the radiation error to be reduced by approximately 87 %. The mean absolute error and the root mean square error between the radiation errors given by the correction equation and the radiation errors given by the experiments are 0.036 K and 0.045 K, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R.Y. Jou, C.T. Lo, Int. J. Thermophys. 32, 523 (2011)

    Article  ADS  Google Scholar 

  2. P.P. Harris, C. Huntingford, P.M. Cox, Philos. T. R. Soc. B 363, 1753 (2008)

    Article  Google Scholar 

  3. J.R. Toggweiler, R. Joellen, Nature 451, 286 (2008)

    Article  ADS  Google Scholar 

  4. Z.A. Holden, J.T. Abatzoglou, C.H. Luce, L.S. Baggett, Agric. For. Meteorol. 151, 1066 (2011)

    Article  ADS  Google Scholar 

  5. J. Balanya, J.M. Oller, R.B. Huey, G.W. Gilchrist, L. Serra, Science 313, 1773 (2006)

    Article  ADS  Google Scholar 

  6. R.A. Kerr, Science 334, 173 (2011)

    Article  ADS  Google Scholar 

  7. A. Duan, G. Wu, Q. Zhang, Y. Liu, Sci. Bull. 51, 1396 (2006)

    Article  Google Scholar 

  8. T.R. Karl, G. Kukla, V.N. Razuvayev, M.J. Changery, R.G. Quayle, R.R. Heim, D.R. Easterling, C.B. Fu, Geophys. Res. Lett. 18, 2253 (1991)

    Article  ADS  Google Scholar 

  9. A.P. Schurer, G.C. Hegerl, S.P. Obrochta, Geophys. Res. Lett. 42, 5974 (2015)

    Article  ADS  Google Scholar 

  10. G. Lopardo, D. Marengo, A. Meda, A. Merlone, F. Moro, F.R. Pennecchi, M. Sardi, Int. J. Thermophys. 33, 1633 (2012)

    Article  ADS  Google Scholar 

  11. A. Haines, A.J. Mcmichael, S. Kovats, M. Saunders, BMJ 316, 1530 (1998)

    Article  Google Scholar 

  12. M.E. Dillon, W. George, R.B. Huey, Nature 467, 704 (2010)

    Article  ADS  Google Scholar 

  13. R.G. Harrison, Q. J. Roy. Meteor. Soc. 137, 402 (2011)

    Article  ADS  Google Scholar 

  14. R.G. Harrison, C.R. Wood, Q. J. Roy. Meteor. Soc. 138, 1114 (2012)

    Article  ADS  Google Scholar 

  15. E. Erell, V. Leal, E. Maldonado, Bound-Lay Meteorol. 114, 205 (2005)

    Article  ADS  Google Scholar 

  16. X. Lin, K.G. Hubbard, G.E. Meyer, J. Atmos. Oceanic Technol. 18, 329 (2010)

    Article  ADS  Google Scholar 

  17. S.J. Richardson, F.V. Brock, S.R. Semmer, C. Jirak, J. Atmos. Oceanic Technol. 16, 1862 (1999)

    Article  ADS  Google Scholar 

  18. X. Lin, K.G. Hubbard, E.A. Walter-Shea, Trans. ASAE 44, 1299 (2001)

    Google Scholar 

  19. M. Fuchs, C.B. Tanner, J. Appl. Me-teor. 4, 544 (1965)

    Article  ADS  Google Scholar 

  20. K.G. Hubbard, X. Lin, Geophys. Res. Lett. 29, 67–1 (2002)

    Article  Google Scholar 

  21. M. Mauder, R.L. Desjardins, Z. Gao, R.V. Haarlem, J. Atmos. Oceanic Technol. 25, 2145 (2008)

    Article  ADS  Google Scholar 

  22. C. Georges, G. Kaser, J. Geophys. Res. 107, ACL 15-1 (2010)

  23. F.V. Brock, K.C. Crawford, R.L. Elliott, G.W. Cuperus, S.J. Stadler, H.L. Johnson, M.D. Eilts, J. Atmos. Oceanic Technol. 12, 5 (1995)

    Article  ADS  Google Scholar 

  24. J.A. Hubbart, J. Nat. Environ. Sci. 2, 9 (2011)

    Google Scholar 

  25. G. Lopardo, F. Bertiglia, S. Curci, G. Roggero, A. Merlone, Int. J. Climatol. 34, 1297 (2014)

    Article  Google Scholar 

  26. R. Nakamura, L. Mahrt, J. Atmos. Oceanic Technol. 22, 1046 (2005)

    Article  ADS  Google Scholar 

  27. C.K. Thomas, A.R. Smoot, J. Atmos. Oceanic Technol. 30, 526 (2013)

    Article  ADS  Google Scholar 

  28. B. Blocken, T. Stathopoulos, J. Carmeliet, Atmos. Environ. 41, 238 (2007)

    Article  ADS  Google Scholar 

  29. S.J. Richardson, J. Atmos. Oceanic Technol. 12, 951 (1995)

    Article  ADS  Google Scholar 

  30. H.R. Seyf, S.M. Rassoulinejad-Mousavi, J. Fluids Eng. 133, 321 (2011)

    Google Scholar 

  31. S.K. Mohammadian, S.M. Rassoulinejad-Mousavi, Y. Zhang, J. Power Sour. 296, 305 (2015)

    Article  ADS  Google Scholar 

  32. S.M. Rassoulinejad-Mousavi, H.R. Seyf, S. Abbasbandy, J. Porous Media 16, 241 (2013)

    Article  Google Scholar 

  33. W.J. Wang, D.S. Chen, J.L. Chu, J. Li, T.Y. Xue, L. Wang, D. Wang, T. Qi, J. Cryst. Growth. 381, 153 (2013)

    Article  ADS  Google Scholar 

  34. H.J. Zhang, J.T. Liu, Y.J. Cao, Y.T. Wang, Powder Technol. 246, 658 (2013)

    Article  Google Scholar 

  35. Y.P. Qin, W. Luo, X.B. Yang, J.F. Hu, Procedia Eng. 26, 608 (2011)

    Article  Google Scholar 

  36. C.W. Hsieh, B. Zheng, S.C. Hsieh, Chem. Commun. 46, 1655 (2010)

    Article  Google Scholar 

  37. X.X. Chen, B. Bai, Hydrogeol. J. 23, 365 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Special Scientific Research Fund of Meteorological Public Welfare Profession of China (GYHY200906037 and GYHY201306079), the National Natural Science Foundation of China (41275042) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD-II).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Liu, QQ. & Ding, RH. Computational Fluid Dynamics Analysis on Radiation Error of Surface Air Temperature Measurement. Int J Thermophys 38, 12 (2017). https://doi.org/10.1007/s10765-016-2151-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-016-2151-0

Keywords

Navigation