Skip to main content
Log in

Measurements of the Temperature-Dependent Total Hemispherical Emissivity Using an Electrostatic Levitation Facility

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Among the three fundamental processes of heat transfer (conduction, convection, and radiation), radiation is the most dominant at high temperatures. The total hemispherical emissivity is an important property that determines the amount of heat loss by radiation. Unfortunately, the emissivity, especially its temperature dependence \((\varepsilon (T))\), is unknown for most materials. Here, we demonstrate the feasibility of measuring \(\varepsilon (T)\) using an electrostatic levitation (ESL) technique that allows such measurements to be made on levitated solid and liquid samples in a contamination-free, high-vacuum environment. The \(\varepsilon (T)\) for solid Ni and liquid \(\hbox {Zr}_{60}\hbox {Al}_{10}\hbox {Cu}_{18}\hbox {Ni}_{9}\hbox {Co}_{3}\) from these measurements is consistent with the existing literature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G.L. Zuppardo, K.G. Ramanathan, J. Opt. Soc. Am. 61, 1607 (1971)

    Article  ADS  Google Scholar 

  2. K.G. Ramanathan, S.H. Yen, J. Opt. Soc. Am. 67, 32 (1977)

    Article  ADS  Google Scholar 

  3. R. Smalley, A.J. Sievers, J. Opt. Soc. Am. 68, 1516 (1978)

    Article  ADS  Google Scholar 

  4. R. Roger, S.H. Yen, K.G. Ramanathan, J. Opt. Soc. Am. 69, 1384 (1979)

    Article  ADS  Google Scholar 

  5. G.L. Abbott, in Measurement of Thermal Radiation Properties of Solids, ed. by J. C. Richmond, (NASA SP-31, 1963), p.293

  6. Y.S. Touloukian, D.P. Dewitt, Thermophysical Properties of Matter, vol. 7 (Plenum Press, New York-Washington, 1970)

  7. P.-F. Paradis, T. Ishikawa, S. Yoda, Int. J. Thermophys. 24, 239 (2003)

    Article  Google Scholar 

  8. S. Krishnan, P.C. Nordine, Phys. Rev. B 47, 11780 (1993)

    Article  ADS  Google Scholar 

  9. S. Krishnan, C.D. Anderson, P.C. Nordine, Phys. Rev. B 49, 3161 (1994)

    Article  ADS  Google Scholar 

  10. J.L. McClure, K. Boboridis, A. Cezairliyan, Int. J. Thermophys. 20, 1137 (1999); ibid 20, 1149 (1999)

  11. H. Watanabe, M. Susa, H. Fukuyama, K. Nagata, Int. J. Thermophys. 24, 473 (2003)

  12. C. Davisson, J.R. Weeks, J. Opt. Soc. Am. 8, 581 (1924)

    Article  ADS  Google Scholar 

  13. W.J. Parker, G.C. Abbott, Symposium on Thermal Radiation of Solids, ed. by S. Katzoff, (NASA SP-55), p. 11 (1965)

  14. A.J. Sievers, J. Opt. Soc. Am. 68, 1505 (1978)

    Article  ADS  Google Scholar 

  15. http://www.omega.com/temperature/Z/pdf/z088-089.pdf

  16. W.-K. Rhim, M. Collender, M.T. Hyson, W.T. Simms, D.D. Elleman, Rev. Sci. Instrum. 56, 307 (1985)

    Article  ADS  Google Scholar 

  17. A.K. Gangopadhyay, G.W. Lee, K.F. Kelton, J.R. Rogers, A.I. Goldman, D.S. Robinson, T.J. Rathz, R.W. Hyers, Rev. Sci. Instrum. 76, 073901 (2005)

  18. N.A. Mauro, K.F. Kelton, Rev. Sci. Instrum. 82, 035114 (2011)

  19. K.E. Grey, Proc. R. Soc. A 145, 855 (1934)

    Google Scholar 

  20. R.E. Pawel, E.E. Stansbury, J. Phys. Chem. Sol. 26, 607 (1965)

    Article  ADS  Google Scholar 

  21. R.K. Wunderlich, H.-J. Fecht, Mater. Trans. 42, 565 (2001)

    Article  Google Scholar 

  22. D.M. Herlach, R.F. Cochrane, I. Egry, H.J. Fecht, A.L. Greer, Int. Mat. Rev. 38, 273 (1993)

    Article  Google Scholar 

  23. D.P. Verret, K.G. Ramanathan, J. Opt. Soc. Am. 68, 1167 (1978)

    Article  ADS  Google Scholar 

  24. H. Kobatake, H. Fukuyama, I. Minato, T. Tsukada, S. Awaji, J. Appl. Phys. 104, 054901 (2008)

    Article  ADS  Google Scholar 

  25. R.K. Wunderlich, H.-J. Fecht, Mater. Sci. Tech. 16, 402 (2005)

    ADS  Google Scholar 

  26. I. Egry, A. Diefenbach, W. Dreier, J. Piller, Int. J. Thermophys. 22, 569 (2001)

    Article  Google Scholar 

  27. J.C. Bendert, M.E. Blodgett, A.K. Gangopadhyay, K.F. Kelton, Appl. Phys. Lett. 102, 211913 (2013)

    Article  ADS  Google Scholar 

  28. X.L. Lin, W.L. Johnson, W.-K. Rhim, JIM. 38, 473 (1997)

    Google Scholar 

  29. S.X. Cheng, Expt. Therm. Fluid Sci. 2, 165 (1989)

    Article  Google Scholar 

  30. N.A. Mauro, A.J. Vogt, K.S. Derendorf, M.L. Johnson, G.E. Rustan, D.G. Quirinale, A. Kreyssig, K.A. Lokshin, J.C. Neuefeind, Xun-Li Wang Ke An, A.I. Goldman, T. Egami, K.F. Kelton, Rev. Sci. Instrum. 87, 013904 (2016)

    Article  ADS  Google Scholar 

  31. M.E. Blodgett, A.K. Gangopadhyay, K.F. Kelton, Int. J. Thermophys. 36, 701 (2015)

    Article  ADS  Google Scholar 

  32. A.K. Gangopadhyay, J.C. Bendert, N.A. Mauro, K.F. Kelton, J. Phys.: Condens. Matter 24, 375102 (2012)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by NASA under Grants NNX10AU19G and NNX16AB52G. Any opinions, finding, and conclusions or recommendations expressed in this manuscript are those of the author(s) and do not necessarily reflect the views of NASA. We would like to thank C. E. Pueblo for technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Gangopadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangopadhyay, A.K., Kelton, K.F. Measurements of the Temperature-Dependent Total Hemispherical Emissivity Using an Electrostatic Levitation Facility. Int J Thermophys 38, 3 (2017). https://doi.org/10.1007/s10765-016-2138-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-016-2138-x

Keywords

Navigation