Skip to main content
Log in

A Solar Volumetric Receiver: Influence of Absorbing Cells Configuration on Device Thermal Performance

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Thermal performance of a solar volumetric receiver incorporating the different cell geometric configurations is investigated. Triangular, hexagonal, and rectangular absorbing cells are incorporated in the analysis. The fluid volume fraction, which is the ratio of the volume of the working fluid over the total volume of solar volumetric receiver, is introduced to assess the effect of cell size on the heat transfer rates in the receiver. In this case, reducing the fluid volume fraction corresponds to increasing cell size in the receiver. SiC is considered as the cell material, and air is used as the working fluid in the receiver. The Lambert’s Beer law is incorporated to account for the solar absorption in the receiver. A finite element method is used to solve the governing equation of flow and heat transfer. It is found that the fluid volume fraction has significant effect on the flow field in the solar volumetric receiver, which also modifies thermal field in the working fluid. The triangular absorbing cell gives rise to improved effectiveness of the receiver and then follows the hexagonal and rectangular cells. The second law efficiency of the receiver remains high when hexagonal cells are used. This occurs for the fluid volume fraction ratio of 0.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S.-H. Lee, S.P. Jang, Efficiency of a volumetric receiver using aqueous suspensions of multi-walled carbon nanotubes for absorbing solar thermal energy. Int. J. Heat Mass Tran. 80, 58–71 (2015)

    Article  Google Scholar 

  2. A. Veeraragavan, A. Lenert, B. Yilbas, S. Al-Dini, E.N. Wang, Analytical model for the design of volumetric solar flow receivers. Int. J. Heat Mass Tran. 55, 556–564 (2012)

    Article  Google Scholar 

  3. B.S. Yilbas, O.S. Kaleem, Performance characteristics of a volumetric solar receiver: presence of an absorber plate with a selective surface. Numer. Heat Transf. Part A-Appl. 67, 992–1009 (2015)

    Article  ADS  Google Scholar 

  4. M.I. Roldán, O. Smirnova, T. Fend, J.L. Casas, E. Zarza, Thermal analysis and design of a volumetric solar absorber depending on the porosity. Renew. Energ. 62, 116–128 (2014)

    Article  Google Scholar 

  5. S. Palero, M. Romero, J.L. Castillo, Comparison of experimental and numerical air temperature distributions behind a cylindrical volumetric solar absorber module. J. Sol. Energy-Trans ASME 130, 011011 (2008)

    Article  Google Scholar 

  6. A. Kribus, Y. Gray, M. Grijnevich, G. Mittelman, S. Mey-Cloutier, C. Caliot, The promise and challenge of solar volumetric absorbers. Sol. Energy 110, 463–481 (2014)

    Article  ADS  Google Scholar 

  7. X. Chen, X. Xia, X. Dong, G. Dai, Integrated analysis on the volumetric absorption characteristics and optical performance for a porous media receiver. Energy Convers. Manag. 105, 562–569 (2015)

    Article  Google Scholar 

  8. V. Khullar, H. Tyagi, N. Hordy, T.P. Otanicar, Y. Hewakuruppu, P. Modi, R.A. Taylor, Harvesting solar thermal energy through nanofluid-based volumetric absorption systems. Int. J. Heat Mass Transf. 77, 377–384 (2014)

    Article  Google Scholar 

  9. H.-J. Lee, J.-K. Kim, S.-N. Lee, Y.-H. Kang, Consistent heat transfer analysis for performance evaluation of multichannel solar absorbers. Sol. Energy 86, 1576–1585 (2012)

    Article  ADS  Google Scholar 

  10. A.L. Avila-Marin, Volumetric receivers in solar thermal power plants with central receiver system technology: a review. Sol. Energy 85, 891–910 (2011)

    Article  ADS  Google Scholar 

  11. Z. Wu, C. Caliot, G. Flamant, Z. Wang, Coupled radiation and flow modeling in ceramic foam volumetric solar air receivers. Sol. Energy 85, 2374–2385 (2011)

    Article  ADS  Google Scholar 

  12. O.K. Siddiqui, B.S. Yilbas, Thermal characteristics of a volumetric solar absorption system. Int. J. Energy Res. 38, 581–591 (2014)

    Article  Google Scholar 

  13. A. Lenert, E.N. Wang, Optimization of nanofluid volumetric receivers for solar thermal energy conversion. Sol. Energy 86, 253–265 (2012)

    Article  ADS  Google Scholar 

  14. M.I. Roldán, R. Monterreal, Heat flux and temperature prediction on a volumetric receiver installed in a solar furnace. Appl. Energy 120, 65–74 (2014)

    Article  Google Scholar 

  15. H. Wang, V.P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, L. Wang, Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting. Sol. Energy Mat. Sol. C. 137, 235–242 (2015)

    Article  Google Scholar 

  16. Y.L. Hewakuruppu, R.A. Taylor, H. Tyagi, V. Khullar, T. Otanicar, S. Coulombe, N. Hordy, Limits of selectivity of direct volumetric solar absorption. Sol. Energy 114, 206–216 (2015)

    Article  ADS  Google Scholar 

  17. Z. Wu, Z. Wang, Fully coupled transient modeling of ceramic foam volumetric solar air receiver. Sol. Energy 89, 122–133 (2013)

    Article  ADS  Google Scholar 

  18. G.L. Harris, Harris properties of silicon carbide (INSPEC (Institution of Electrical Engineering), London, 1995), pp. 15–20

    Google Scholar 

  19. R. Kitamura, L. Pilon, M. Jonasz, Optical constants of silica glass from extreme. Appl. Optics 46, 8118–8133 (2007)

    Article  ADS  Google Scholar 

  20. http://www.schott.com/advanced_optics/english/download/schott_tie31_mechanical_and_thermal_properties_of_optical_eng.pdf (2016)

  21. http://accuratus.com/silicar.html (2016)

  22. http://www.thermopedia.com/content/553/ (2016)

Download references

Acknowledgments

The authors acknowledge the funded NSTIP project 13-ENE271-04-R via support of KACST and the Deanship of Scientific Research at King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Yilbas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilbas, B.S., Shuja, S.Z. A Solar Volumetric Receiver: Influence of Absorbing Cells Configuration on Device Thermal Performance. Int J Thermophys 38, 1 (2017). https://doi.org/10.1007/s10765-016-2132-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-016-2132-3

Keywords

Navigation