Skip to main content
Log in

Survey of Key Parameters of Impurities in Aluminum: Diffusion Coefficients, Solubility, and Liquidus Slopes

  • TEMPMEKO 2016
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Impurities represent in many cases the largest contribution to the uncertainty associated with fixed points of the International Temperature Scale of 1990 (ITS-90). The effect of impurities on the solidification temperature of ITS-90 metals can be characterized by the liquidus slope, the values of which have recently been characterized for a large number of systems. Two other key parameters are the diffusion coefficient, which provides information on how rapidly diffusion, and hence mixing, proceeds, as well as on the validity of the Scheil model of solidification; and the solubility, which provides information on how much impurity is actually dissolved and hence participates in affecting the solidification temperature. In this study, a comprehensive survey is presented of liquidus slopes, together with a survey of 237 diffusion coefficients and 274 values for the solubility of impurities in both liquid and solid aluminum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. J.V. Pearce, Distribution coefficients of impurities in metals. Int. J. Thermophys. 35, 628–635 (2014)

    Article  ADS  Google Scholar 

  2. J.V. Pearce, J. Gisby, P.P.M. Steur, Liquidus slopes of impurities in ITS-90 fixed points from the mercury point to the copper point in the low concentration limit. Metrologia 53, 1101–1114 (2016)

    Article  ADS  Google Scholar 

  3. N. Lee, J. Cahoon, Interdiffusion of copper and iron in liquid aluminium. J. Phase Equilib. 32, 226–234 (2011)

    Article  Google Scholar 

  4. S.-I. Fujikawa, K.-I. Hirano, Y. Fukushima, Diffusion of silicon in aluminium. Metall. Trans. A 9a, 1811–1815 (1978)

    Article  ADS  Google Scholar 

  5. W.B. Alexander, L.M. Slifkin, Diffusion of solutes in aluminium and dilute aluminium alloys. Phys. Rev. B 1, 3274–3282 (1970)

    Article  ADS  Google Scholar 

  6. Aluminum: Properties and Physical Metallurgy, ed. by J. E. Hatch (ASM International, Almere, 1 Jan 1984)

  7. E.A. Brandes, G.B. Brook, Smithells Metals Reference Book, 7th edn. (Butterworth-Heinemann, Oxford, 1992)

    Google Scholar 

  8. K. Hirano, S. Fujikawa, Impurity diffusion in aluminum. J. Nucl. Mater. 69, 70, 564–566 (1978)

    Article  Google Scholar 

  9. Y. Dua, Y.A. Chang, B. Huang, W. Gong, Z. Jin, H. Xu, Z. Yuan, Y. Liu, Y. He, F.-Y. Xie, Diffusion coefficients of some solutes in fcc and liquid Al: critical evaluation and correlation. Mat. Sci. Eng. A Struct. A363, 140–151 (2003)

    Article  Google Scholar 

  10. N. Lee, J. Cahoon, Interdiffusion of copper and iron in liquid aluminium. J. Phase Equilib. 32, 226–234 (2011)

    Article  Google Scholar 

  11. S.-I. Fujikawa, K.-I. Hirano, Y. Fukushima, Diffusion of silicon in aluminium. Metall. Trans. A 9a, 1811–1815 (1978)

    Article  ADS  Google Scholar 

  12. K. Hirano, S. Fujikawa, Impurity diffusion in aluminum. J. Nucl. Mater. 69&70, 564–566 (1978)

    Article  Google Scholar 

  13. Y. Dua, Y.A. Chang, B. Huang, W. Gong, Z. Jin, H. Xu, Z. Yuan, Y. Liu, Y. He, F.-Y. Xie, Diffusion coefficients of some solutes in fcc and liquid Al: critical evaluation and correlation. Mat. Sci. Eng. A Struct. A363, 140–151 (2003)

    Article  Google Scholar 

  14. C.E. Ransley, H. Neufeld, The solubility relationships in the aluminium–sodium and aluminium–silicon–sodium systems. J. Inst. Metals 78, 25–46 (1950)

    Google Scholar 

  15. J.E. Hilliard, B.L. Averbach, M. Cohen, Self and interdiffusion in aluminum–zinc alloys. Acta Metall. 7, 68–92 (1959)

    Article  Google Scholar 

  16. J.B. Murphy, Interdiffusion in dilute aluminium–copper solid solutions. Acta Metall. 9, 563–569 (1961)

    Article  Google Scholar 

  17. D. Ye Ovsienko, I.K. Zasimuk, Effect of the extent of mosaic structure on the diffusion of zinc in monocrystals of aluminium. Phys. Met. Metall. 10, 103–108 (1961)

    Google Scholar 

  18. K. Hirano, R.P. Agarwala, Cohen, diffusion of iron, nickel and cobalt in aluminum. M Acta Metall. 10, 857–863 (1962)

    Article  Google Scholar 

  19. T.S. Lundy, J.F. Murdock, Diffusion of Al(26) and Mn(54) in aluminum. J. Appl. Phys. 33, 1671–1673 (1962)

    Article  ADS  Google Scholar 

  20. R.P. Agarwala, S.P. Murarka, M.S. Anand, Diffusion of chromium in aluminium. Acta Metall. 12, 871–874 (1964)

    Article  Google Scholar 

  21. M.S. Anand, R.P. Agarwala, Diffusion of palladium, silver, cadmium, indium, and tin in aluminum. Trans. Met. Soc. AIME 239(11), 1848–1853 (1967)

    Google Scholar 

  22. W.G. Fricke Jr., Aluminum, Alcoa Research Labs., USA, 1, 118, 1967, ed. by Van Horn (Metals Park, Ohio: American Society for Metals). See Fig. 3. For diffusion coefficients for various elements in aluminum

  23. A.R. Paul, R.P. Agarwala, Diffusion of molybdenum in aluminum. J. Appl. Phys. 38, 3790–3791 (1967)

    Article  ADS  Google Scholar 

  24. S. Badrinarayanan, H.B. Mathur, Impurity diffusion of antimony and silver in aluminium. Int. J. Appl. Radat. Isot. 19, 353–360 (1968)

    Article  Google Scholar 

  25. M. Beyeler, Y.J. Adda, Détermination des volumes d’Activation pour la diffusion des atomes dans l’Or, le cuivre et l’Aluminium. Phys 29, 345–352 (1968)

    Google Scholar 

  26. J.J. Blechet, A.V. Craeynest, D.J. Calais, Diffusion of uranium in infinite dilution in aluminium. Nucl. Mater. 27, 112–113 (1968)

    Article  ADS  Google Scholar 

  27. S.P. Murarka, M. Anand, R.P. Agarwala, Diffusion of vanadium in aluminium and nickel. Acta Metall. 16, 69–72 (1968)

    Article  Google Scholar 

  28. T.E. Volin, R.W. Balluffi, Annealing kinetics of voids and the self-diffusion coefficient in aluminum. Phys. Status Solidi 25, 163–173 (1968)

    Article  Google Scholar 

  29. W.B. Alexander, L.M. Slifkin, Diffusion of solutes in aluminum and dilute aluminum alloys. Phys. Rev. B 1, 3274–3282 (1970)

    Article  ADS  Google Scholar 

  30. M.S. Anand, R.P. Agarwala, Effect of the oxide method on impurity diffusion in aluminium. Phys. Status Solidi A 1, K41–K43 (1970)

    Article  ADS  Google Scholar 

  31. M. Beyeler, F. Maurice, R. Seguin, Contribution a l’etude de l’heterodiffusion dans l’aluminium. Mem. Sci. Rev. Metall. 67, 295–302 (1970)

    Google Scholar 

  32. G.M. Hood, The diffusion of iron in aluminium. Hood. Phil. Mag. 21, 305–328 (1970)

    Article  ADS  Google Scholar 

  33. N.L. Peterson, S.J. Rothman, Impurity diffusion in aluminium. Phys. Rev. B 1, 3264–3273 (1970)

    Article  ADS  Google Scholar 

  34. S. Fujikawa, K. Hirano, Diffusion of gold and copper in aluminum. Trans. JIM 12, 434–447 (1971)

    Article  Google Scholar 

  35. G.M. Hood, R.J. Schultz, The diffusion of manganese in aluminium. Phil. Mag. 23, 1479–1489 (1971)

    Article  ADS  Google Scholar 

  36. G.M. Hood, R.J. Schultz, Indium diffusion in aluminum. Phys. Rev. B 4, 2339–2341 (1971)

    Article  ADS  Google Scholar 

  37. M.S. Anand, R.P. Agarwala, Diffusion of cobalt in aluminium. Phil. Mag. 26, 297–309 (1972)

    Article  ADS  Google Scholar 

  38. W.G. Fricke Jr., Correlation between frequency factor and activation energy for diffusion in aluminum. Scripta Metall. 6, 1139–1144 (1972)

    Article  Google Scholar 

  39. I. Goedeny, D. Beke, F.J. Kedves, Diffusion of zinc in polycrystalline aluminium. Phys. Status Solidi A 13, K155–K157 (1972)

    Article  ADS  Google Scholar 

  40. D. Bergner, E. Cyrener, Diffusion von fremdelementen in aluminium-mischkristallen teil II: zur diffusion von zink und mangan in aluminium. Neue Hütte 18, 42713 (1973)

    Google Scholar 

  41. T. Marumo, S. Fujikawa, K. Hirano, Diffusion of zirconium in aluminum. J. Jan. Inst. Light Met. 23, 17–25 (1973)

    Article  Google Scholar 

  42. G.P. Tiwari, B.D. Sharma, Diffusion of tin & cesium in polycrystalline aluminium. Indian J. Technol. 11, 557–560 (1973)

    Google Scholar 

  43. N.Q. Lam, S.J. Rothman, L.J. Nowicki, Self-diffusion in copper at low temperatures. Phys. Status Solidi (a) 23, K35–K38 (1974)

    Article  ADS  Google Scholar 

  44. S. Fujikawa, K. Hirano, Diffusion of (65)Zn in aluminum and Al–Zn–Mg alloy over a wide range of temperature. Trans. Jpn. Inst. Met. 17, 809–818 (1976)

    Article  Google Scholar 

  45. D. Beke, I. Godeny, F.J. Kedves, Diffusion of Zn(65) in dilute AlZn, AlMg, AlZnMg and AlZnFe alloys. Acta Metall. 25, 539–550 (1977)

    Article  Google Scholar 

  46. S. Fujikawa, K. Hirano, Diffusion of 28Mg in aluminum. Mater. Sci. Eng. 27, 25–33 (1977)

    Article  Google Scholar 

  47. S. Sudar, J. Csikai, M. Buczko, Diffusion of (24)Na in polycrystalline aluminium. Z. Metallkd. 68, 740–741 (1977)

    Google Scholar 

  48. G. Erdelyi, D.L. Beke, F.J. Kedves, I. Godeny, Determination of diffusion coefficient of Zn, Co and Ni in aluminium by a resistometric method. Phil. Mag. B 38, 445–462 (1978)

    Article  ADS  Google Scholar 

  49. S. Fujikawa, K. Hirano, Y. Fukushima, Diffusion of silicon in aluminum. Metall. Trans. A 9, 1811–1815 (1978)

    Article  Google Scholar 

  50. N.L. Peterson, S.J. Rothman, Isotope effect for diffusion of zinc and copper in aluminum. Phys. Rev. B 17, 4666–4673 (1978)

    Article  ADS  Google Scholar 

  51. F. Sawayanagi, R. Hasiguchi, Diffusion of mercury, thallium and lead in aluminum. J. Jpn. Inst. Met. 42, 1155–1160 (1978)

    Google Scholar 

  52. D.L. Beke, I. Goedeny, F.J. Kedves, Diffusion of 65Zn in dilute AlCu, AlCuZn, AlSi, and AlSiZn alloys. Phil. Mag. A 47, 281–299 (1983)

    Article  ADS  Google Scholar 

  53. N. van Chi, D. Bergner, in DIMETA-82: Diffusion in Metals and Alloys, ed. by F.J. Kedves, D.L. Beke (Trans Tech Publications, Switzerland, 1983), p. 334

  54. G.M. Hood, R.J. Schultz, J. Armstrong, Co tracer diffusion in Al. Phil. Mag. A 47, 775–779 (1983)

    Article  ADS  Google Scholar 

  55. N. Garg, L.S. Castleman, C. D’Antonio, Diffusion of silicon in aluminum-rich alloy thin films. Thin Solid Films 112, 317–328 (1984)

    Article  ADS  Google Scholar 

  56. D.L. Beke, F.J. Kedves, Diffusion processes in Al alloys. Cryst. Res. Technol. 20, 73–78 (1985)

    Article  Google Scholar 

  57. A. Paccagnella, G. Ottaviani, P. Fabbri, G. Ferla, G. Queirolo, Silicon diffusion in aluminum. Thin Solid Films 128, 217–223 (1985)

    Article  ADS  Google Scholar 

  58. D.L. Beke, I. Gödény, I.A. Szabó, G. Erdélyi, F.J. Kedves, On the diffusion of 59Fe into aluminium and AlMn solid solutions. Phil. Mag. A 55, 425–443 (1987)

    Article  ADS  Google Scholar 

  59. S. Dais, R. Messer, A. Seeger, Nuclear-Magnetic-Resonance Study of self-diffusion in aluminium. Mater. Sci. Forum 15–18, 419–424 (1987)

    Article  Google Scholar 

  60. S. Fujikawa, K. Hirano, Impurity diffusion of manganese in aluminum. Mater. Sci. Forum 13, 539–545 (1987)

    Article  Google Scholar 

  61. Y. Minamino, T. Yamane, H. Araki, Interdiffusion in a dilute solid solution of Al-Li alloy measured by electrical resistance. Metall. Trans. A 18, 1536–1538 (1987)

    Article  Google Scholar 

  62. D.L. Beke, I. Godeny, I. Moricz, F.J. Kedves, Diffusion of Mn-54 in aluminium. Phil. Mag. Lett. 60, 219–224 (1989)

    Article  ADS  Google Scholar 

  63. S. Fujikawa, K. Hirano, Impurity-diffusion of copper in aluminum, diffus. Defect data part A defect and diffus. Forum 66–69, 447–452 (1989)

    Google Scholar 

  64. C. Becker, G. Erdelyi, G. Hood, H. Mehrer, Diffusion of Au, Fe and Zn in aluminium under hydrostatic pressure. Defect Diffus. Forum 66–69, 409–414 (1991)

    Google Scholar 

  65. G. Erdelyi, K. Freitag, H. Mehrer, Diffusion of tin implanted in aluminium. Phil. Mag. A 63, 1167–1174 (1991)

    Article  ADS  Google Scholar 

  66. G. Rummel, T. Zumkley, M. Eggersmann, K. Freitag, H. Mehrer, Diffusion of implanted 3d-transition elements in aluminium part I: temperature dependence. Z. Metallkd. 86, 122–130 (1995)

    Google Scholar 

  67. G. Rummel, T. Zumkley, M. Eggersmann, K. Freitag, H. Mehrer, Diffusion of implanted 3d-transition elements in aluminium part II: pressure dependence. Z. Metallkd. 86, 131–140 (1995)

    Google Scholar 

  68. S.-I. Fujikawa, Impurity diffusion of scandium in aluminum. Diffus. Defect Data 143–147, 115–120 (1997)

    Article  Google Scholar 

  69. B. Noble, S.E. Bray, Coarsening of the delta’ phase in aluminium-lithium alloys. Phil. Mag. A 79, 859–872 (1999)

    Article  ADS  Google Scholar 

  70. T. Takahashi, K. Hisayuki, T. Yamane, Y. Minamino, Quaternary diffusion in the alpha solid solutions of Al–Zn–Mg–Ag alloys. Diffus. Defect Data A Defect Diffus. Forum 194–199, 235–240 (2001)

    Article  Google Scholar 

  71. N.A. Belov, A.A. Aksenov, Dmitry G. Eskin (Eds.), Iron in Aluminium Alloys: Impurity and Alloying Element. Advances in Metallic Alloys (CRC Press, Taylor & Francis Group, 2002)

  72. www.totalmateria.com

  73. ASM Specialty Handbook: Aluminum and Aluminum Alloys, ed. by J.R. Davis. ASM International. ISBN 978-0-87170-496-2

  74. Chemistry of Aluminium, Gallium, Indium and Thallium, ed. by A.J. Downs (Springer Netherlands, 1993). ISBN 978-0-7514-0103-5

  75. Handbook of Aluminum: Volume 2: Alloy Production and Materials Manufacturing, ed. by G. E. Totten, D. Scott MacKenzie (CRC Press, 2003). ISBN 9780824708962

  76. M. Yan, Z. Fan, Durability of materials in molten aluminum alloys. J. Mater. Sci. 36, 285–295 (2001)

    Article  ADS  Google Scholar 

  77. Binary Alloy Phase Diagrams, 2nd Edition, Edited by T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak L, (ASM International, Materials Park, OH, 1990)

  78. M. Hansen, Constitution of Binary Alloys (\(2^{\rm nd}\) Edition), McGraw-Hill (1958), ISBN 978-0070260504

  79. R.P. Elliott, Constitution of Binary Alloys—First Supplement (McGraw-Hill, New York, 1965)

  80. J. Drapala, L. Kuchař, Metallurgy of Pure Metals (Cambridge International Science Publishing, Cambridge, 2000). ISBN 978-1-904602-03-3

  81. Databank of Binary Alloy Phase Diagrams. http://www.factsage.cn/fact/documentation/SGTE/SGTE_list.htm

  82. K. Hein, E. Buhrig (ed.), Kristallisation aus Schmelzen, Deutscher Verlag für Grundstoffindustrie, Leipzig (1983), Tables A2/1 and A2/2, pp. 206–208

  83. J. Ancsin, Impurity dependence of the aluminium point. Metrologia 40, 36–41 (2003)

    Article  ADS  Google Scholar 

  84. D. Head, P. Petchpong, The influence of titanium on the aluminum fixed-point temperature. Int. J. Thermophys. 32, 1507–1517 (2011)

    Article  ADS  Google Scholar 

  85. J.V. Widiatmo, K. Harada, K. Yamazawa, M. Arai, Estimation of impurity effect in aluminium fixed-point cells based on thermal analysis. Metrologia 43, 561 (2006)

    Article  ADS  Google Scholar 

  86. E. Renaot, M.H. Valin, M. Elgourdou, Influence of impurities and filling protocol on the aluminum fixed point. Int. J. Thermophys. 29, 852–860 (2008)

    Article  ADS  Google Scholar 

  87. E. Renaot, C. Martin, Aluminum fixed point: impact of the time spent in the liquid phase on the liquid-solid transition and obviousness of the pollution of the ingot. Int. J. Thermophys. 32, 1496 (2011)

    Article  ADS  Google Scholar 

  88. P. Petchpong, Quantitative Impurities Effects on Temperatures of Tin and Aluminium Fixed-Point Cells, Doctoral Thesis, School of Engineering and Design, Brunel University, London (2009)

  89. J. Drapala, L. Kuchar, M. Kursa, Preparation of high purity metals by crystallization methods, Journal de physique IV, Colloque C7, supplement au. J. de Phys. III, C7–143 (1995)

    Google Scholar 

  90. M.A. Easton, D.H. St John, Partitioning of titanium during solidification of aluminium alloys. Mater. Sci. Tech. 16, 993–1000 (2000)

    Article  Google Scholar 

  91. V.R. Voller, S. Sundarraj, A model of inverse segregation: the role of microporosity. Int. J. Heat Mass Transf. 38, 1009–1018 (1995)

    Article  Google Scholar 

  92. A.M. Bunn, P. Schumacher, M.A. Kearns, C.B. Boothroyd, A.L. Greer, Grain refinement by Al–Ti–B alloys in aluminium melts: a study of the mechanisms of poisoning by zirconium. Mater. Sci. Tech. 15, 1115 (1995)

    Article  Google Scholar 

  93. J.L. Murray, The Al–In (Aluminum–Indium) system. Bull. Alloy Ph. Diagr. 4, 271 (1983)

    Article  Google Scholar 

  94. R.H. Davies, A.T. Dinsdale, J.A. Gisby, J.A.J. Robinson, S.M. Martin, MTDATA—thermodynamic and phase equilibrium software from the National Physical Laboratory. CALPHAD 26, 229–271 (2002)

    Article  Google Scholar 

  95. G.H. Gulliver, The quantitative effect of rapid cooling upon the constitution of binary alloys. J. Inst. Met. 9, 120–157 (1913)

    Google Scholar 

  96. E. Scheil, Comments on the layer crystal formation. Z. Metallkd. 34, 70–72 (1942)

    Google Scholar 

  97. J.V. Pearce, R.I. Veltcheva, D.H. Lowe, Z. Malik, J.D. Hunt, Optimization of SPRT measurements of freezing in a zinc fixed-point cell. Metrologia 49, 359–367 (2012)

    Article  ADS  Google Scholar 

  98. J.V. Pearce, R.I. Veltcheva, M.J. Large, Impurity and thermal modeling of SPRT fixed-points, 9th international temperature symposium. AIP Conf. Proc. 1552, 283 (2013)

    Article  ADS  Google Scholar 

  99. M. Fahr, S. Rudtsch, Oxides in metal fixed points of the ITS-90. Metrologia 46, 423 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was funded by the UK National Measurement System for Engineering and Flow Metrology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan V. Pearce.

Additional information

Selected Papers of the 13th International Symposium on Temperature, Humidity, Moisture and Thermal Measurements in Industry and Science.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pearce, J.V. Survey of Key Parameters of Impurities in Aluminum: Diffusion Coefficients, Solubility, and Liquidus Slopes. Int J Thermophys 37, 123 (2016). https://doi.org/10.1007/s10765-016-2128-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-016-2128-z

Keywords

Navigation