Skip to main content

Advertisement

Log in

Development of a Skin Burn Predictive Model adapted to Laser Irradiation

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Laser technology is increasingly used, and it is crucial for both safety and medical reasons that the impact of laser irradiation on human skin can be accurately predicted. This study is mainly focused on laser–skin interactions and potential lesions (burns). A mathematical model dedicated to heat transfers in skin exposed to infrared laser radiations has been developed. The model is validated by studying heat transfers in human skin and simultaneously performing experimentations an animal model (pig). For all experimental tests, pig’s skin surface temperature is recorded. Three laser wavelengths have been tested: 808 nm, 1940 nm and 10 600 nm. The first is a diode laser producing radiation absorbed deep within the skin. The second wavelength has a more superficial effect. For the third wavelength, skin is an opaque material. The validity of the developed models is verified by comparison with experimental results (in vivo tests) and the results of previous studies reported in the literature. The comparison shows that the models accurately predict the burn degree caused by laser radiation over a wide range of conditions. The results show that the important parameter for burn prediction is the extinction coefficient. For the 1940 nm wavelength especially, significant differences between modeling results and literature have been observed, mainly due to this coefficient’s value. This new model can be used as a predictive tool in order to estimate the amount of injury induced by several types (couple power-time) of laser aggressions on the arm, the face and on the palm of the hand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E.F. Maher, in Report SAM-TR-78-32: Transmission and absorption coefficients for ocular media of the Rhesus monkey (Brooks Air Force Base, San Antonio, TX, 1978)

  2. N. Museux, L. Perez, L. Autrique, D. Agay, Burns 38, 658 (2012)

    Article  Google Scholar 

  3. S.D. Jackson, A. Lauto, Lasers Surg. Med. 30, 184 (2002)

    Article  Google Scholar 

  4. S.L. Jacques, Appl. Opt. 32, 2447 (1993)

    Article  ADS  Google Scholar 

  5. B. Chen, D.C. O’Dell, S.L. Thomsen, B.A. Rockwell, A.J. Welch, Lasers Surg. Med. 37, 373 (2005)

    Article  Google Scholar 

  6. B. Choi, J.K. Barton, E.K. Chan, A.J. Welch, Lasers Surg. Med. 23, 185 (1998)

    Article  Google Scholar 

  7. B.M. Hantash, V.P. Bedi, B. Kapadia, Z. Rahman, K. Jiang, H. Tanner, K.F. Chan, Lasers Surg. Med. 39, 96 (2007)

    Article  Google Scholar 

  8. B.P. Payne, N.S. Nishioka, B.B. Mikic, V. Venugopalan, Lasers Surg. Med. 23, 1 (1998)

    Article  Google Scholar 

  9. A.J. Welch, J.H. Torres, W.F. Cheong, Physics, system design, experimental applications. Tex. Heart Inst. J. 16, 141 (1989)

    Google Scholar 

  10. T.P. Sullivan, W.H. Eaglstein, S.C. Davis, P. Mertz, Wound Rep. Reg. 9, 66 (2001)

    Article  Google Scholar 

  11. H.H. Pennes, J. Appl. Physiol. 1, 93 (1948)

    ADS  Google Scholar 

  12. B. Chen, S.L. Thomsen, R.J. Thomas, J. Oliver, A.J. Welch, Lasers Surg. Med. 40, 358 (2008)

    Article  Google Scholar 

  13. A.R. Moritz, F.C. Henriques, Am. J. Pathol. 23, 695 (1947)

    Google Scholar 

  14. F.F. Henriques, Arch. Pathol. 43, 489 (1947)

    Google Scholar 

  15. A. Shitzer, M.K. Kleiner, Thermal behavior of biological tissues—a general analysis. Bull. Math. Biol. 38, 369–386 (1976)

  16. M.M. Chen, K.R. Holmes, Microvascular contributions in tissue heat transfer. Ann. N. Y. Acad. Sci. 335, 137–150 (1980)

    Article  ADS  Google Scholar 

  17. S. Weinbaum, L.M. Jiji, D.E. Lemons, Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer. Part I. ASME J. Biomech. Eng. 106, 321–330 (1984)

    Article  Google Scholar 

  18. J. Lang, B. Erdmann, M. Seebass, Impact of nonlinear heat transfer on temperature control in regional hyperthermia. IEEE Trans. Biomed. Eng. 46, 1129–1138 (1999)

    Article  Google Scholar 

  19. D.T. Tompkins, R. Vanderby, S.A. Klein, W.A. Beckman, R.A. Steeves, D.M. Frye, B.R. Paliwal, Int. J. Hyperth. 10, 517 (1994)

    Article  Google Scholar 

  20. B. Erdmann, J. Lang, M. Seebass, Optimization of temperature distributions for regional hyperthermia based on a nonlinear heat transfer model. Ann. N. Y. Acad. Sci. 858, 36–46 (1998)

    Article  ADS  Google Scholar 

  21. E. Kengne, I. Mellal, M.B. Hamouda, A. Lakhssassi, A mathematical model to solve bio-heat transfer problems through a bio-heat transfer equation with quadratic temperature-dependent blood perfusion under a constant spatial heating on skin surface. J. Biomed. Sci. Eng. 7, 721–730 (2014)

  22. D. Fiala, K.J. Lomas, M. Stohrer, J. Appl. Physiol. 87, 1957 (1999)

    Google Scholar 

  23. J.P. Abraham, E.M. Sparrow, Int. J. Heat Mass Trans. 50, 2537 (2007)

    Article  Google Scholar 

  24. M. Knudsen, J. Overgaard, I.E.E.E. Trans, Biomed. Eng. 33, 477 (1986)

    Google Scholar 

  25. C. Lormel, Ph.D. Thesis (Perpignan, France 2005)

  26. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd edn. (Oxford Science Publications, Oxford, 1946)

    MATH  Google Scholar 

  27. F.P. Incropera, D.P. Dewitt, Fundamentals of Heat and Mass Transfer, 5th edn. (Wiley, New York, 2001)

    Google Scholar 

  28. J.H. Torres, M. Motamedi, J.A. Pearce, A.J. Welch, Appl. Opt. 32, 597 (1993)

    Article  ADS  Google Scholar 

  29. S.H. Diaz, G. Aguilar, E.J. Lavernia, B.J.F. Wong, IEEE J. Quantum Electron. 7, 944 (2001)

    Article  Google Scholar 

  30. A. Takata, Aerosp. Med. 45, 634 (1974)

    Google Scholar 

  31. J.Z. Zhang, Y.G. Shen, X.X. Zhang, Lasers Med. Sci. 24, 329 (2009)

    Article  MathSciNet  Google Scholar 

  32. H.S. Hatfield, J. Physiol. 120, 35 (1953)

    Google Scholar 

  33. B. Chen, S.L. Thomsen, R.J. Thomas, A.J. Welch, J. Biomed. Opt. 11, 1 (2006)

    Google Scholar 

  34. L. Autrique, C. Lormel, Numerical design of experiment for sensitivity analysis – application to skin burn injury prediction. IEEE Trans. Biomed. Eng. 55(4), 1279–1290 (2008)

    Article  Google Scholar 

  35. F. Breaban, J.F. Coutouly, P. Deprez, A. Deffontaine, Lasers Eng. 11, 77 (2001)

    Google Scholar 

  36. S. Mordon, in Groupe laser de la Société Française de Dermatologie : les lasers en dermatologie, 2\(^{st}\) edn (Doin, France, 2006)

  37. Y.C. Wu, National Bureau of Standards (District of Columbia, Washington, 1982)

    Google Scholar 

  38. J.A. Weaver, A.M. Stoll, in NADC Memo Report 6708 (United Stated Naval Air Development Center, Johnsville, Pennsylvania, 1967)

  39. D.C. Gaylor, Ph.D. thesis (Massachusetts Institute of Technology, USA, 1989)

  40. J.A. Pearce, S.L. Thomsen, H. Vijverberg, T.J. McMurray, In Proceedings SPIE: Kinetics for birefringence changes in thermally coagulated rat skin collagen, vol. 1876, pp.180–185, (1993)

  41. C.E. Fugitt, In Armed Forces Special Weapons Project AFSWP-606: A rate process of thermal injury (1955)

  42. J. Whitton, J. Everall, Br. J. Derm. 89, 467 (1973)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sonneck-Museux.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonneck-Museux, N., Scheer, E., Perez, L. et al. Development of a Skin Burn Predictive Model adapted to Laser Irradiation. Int J Thermophys 37, 122 (2016). https://doi.org/10.1007/s10765-016-2106-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-016-2106-5

Keywords

Navigation