Skip to main content
Log in

Nature of the Thermoelectric Power in Bipolar Semiconductors

  • Review
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Thermoelectricity increasingly draws the attention of researchers because it can provide us with methods to generate environmentally clean energy and solid-state cooling. However, some problems in thermoelectricity’s physics remain unsolved. In this paper, a new approach to thermoelectric phenomena is presented, one that uses a linear description of the nonequilibrium charge carrier transport. The role of nonequilibrium carriers of both surface and bulk recombination processes has been shown to be crucial even within the linear approximation. Electron and hole quasi-Fermi levels originated from the thermal field are explicitly obtained in the case of a thermoelectric current flowing through an external circuit; the necessary corresponding boundary conditions are obtained. For the first time, it is shown that the quasi-Fermi level of one of the carriers can be a nonmonotonous function of spatial coordinates. General expressions for the thermoelectric current, the thermo-electromotive force (thermo-emf), and the electrical resistance of bipolar semiconductors have been obtained. Also for the first time, the influence of both surface recombination and surface resistance in thermoelectric phenomena was taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. D.M. Rowe, Thermoelectric Handbook: Macro to Nano (CRS Press, London, 2006)

    Google Scholar 

  2. D.M. Rowe, Thermoelectrics and its Energy Harvesting. Modules, Systems, and Applications in Thermoelectrics (CRC Press, London, 2012)

    Book  Google Scholar 

  3. D.M. Rowe, Thermoelectrics and its Energy Harvesting. Materials, Preparation and Characterization in Thermoelectrics (CRC Press, London, 2012)

    Book  Google Scholar 

  4. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, Z. Ren, Science 320, 634 (2008)

    Article  ADS  Google Scholar 

  5. L.P. Bulat, V.V. Karatayev, V.B. Osvenskii, Y.N. Parkhomenko, M.G. Lavrentev, A.I. Sorokin, D.A. Pshenai-Severin, V.V. Blank, G.I. Pivovarov, V.T. Bublik, NYu. Tabachkova, J. Electron. Mater. 42, 2110 (2013)

    Article  ADS  Google Scholar 

  6. L.P. Bulat, I. Drabkin, V. Karatayev, V. Osvenskii, Y. Parkhomenko, D. Pshenay-Severin, A. Sorokin, J. Electron. Mater. 43, 2121 (2014)

    Article  ADS  Google Scholar 

  7. L.P. Bulat, D. Pshenay-Severin, I. Drabkin, V. Karataev, J. Thermoelectricity #1 29 (2011)

  8. OYu. Titov, J.E. Velazquez-Perez, YuG Gurevich, Int. J. Therm. Sci. 92, 44 (2015)

    Article  Google Scholar 

  9. A.I. Anselm, Introduction to Semiconductor Theory (Mir/Prentice-Hall, Englewood Cliffs/Moscow, 1981)

    Google Scholar 

  10. W. Thomson, Mathematical and Physical Papers (Cambridge University Press, Cambridge, 1882)

    Google Scholar 

  11. K. Seeger, Semiconductor Physics (Springer, New York, 1973)

    Book  MATH  Google Scholar 

  12. V.I. Kaydanov, A.V. Nuramski, Electric Conductivity, Thermoelectric Phenomena and Thermal Conductivity of Semiconductors (LPI, Leningrad, 1981)

    Google Scholar 

  13. YuG Gurevich, V.B. Yurchenko, Sov. Phys. Semicond. 25, 1268 (1991)

    Google Scholar 

  14. A.F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch, London, 1957)

    Google Scholar 

  15. YuG Gurevich, OYu. Titov, G.N. Logvinov, O.I. Lyubimov, Phys. Rev. B 51, 6999 (1995)

    Article  ADS  Google Scholar 

  16. Yu.G. Gurevich, J. Thermoelectricity #2 5 (1997)

  17. YuG Gurevich, G.N. Logvinov, I.N. Volovichev, G. Espejo, OYu. Titov, A. Meriuts, Phys. Status Solidi (b) 231, 278 (2002)

    Article  ADS  Google Scholar 

  18. YuG Gurevich, I.N. Volovichev, Phys. Rev. B 60, 7715 (1999)

    Article  ADS  Google Scholar 

  19. YuG Gurevich, G.N. Logvinov, Phys. Rev. B 46, 15516 (1992)

    Article  ADS  Google Scholar 

  20. YuG Gurevich, G.N. Logvinov, G. Espejo, OYu. Titov, A. Meriuts, Semiconductors 34, 755 (2000)

    Article  ADS  Google Scholar 

  21. J. Tauc, Photo and Thermoelectric Effects in Semiconductors (Pergamon, Oxford, 1956)

    MATH  Google Scholar 

  22. YuG Gurevich, J.E. Velazquez-Perez, G. Espejo-Lopez, I.N. Volovichev, OYu. Titov, J. Appl. Phys. 101, 023705 (2007)

    Article  ADS  Google Scholar 

  23. I.N. Volovichev, G.N. Logvinov, OYu. Titov, YuG Gurevich, J. Appl. Phys. 95, 4494 (2004)

    Article  ADS  Google Scholar 

  24. YuG Gurevich, G.N. Logvinov, J.E. Velazquez, OYu. Titov, Sol. Energy Mater. Sol. Cells 91, 1408 (2007)

    Article  Google Scholar 

  25. OYu. Titov, J. Giraldo, YuG Gurevich, Appl. Phys. Lett. 80, 3108 (2002)

    Article  ADS  Google Scholar 

  26. I.N. Volovichev, J.E. Velazquez-Perez, YuG Gurevich, Solid-State Electron. 52, 1703 (2008)

    Article  ADS  Google Scholar 

  27. I.N. Volovichev, YuG Gurevich, Semiconductors 35, 306 (2001)

    Article  ADS  Google Scholar 

  28. A.V. Meriuts, YuG Gurevich, J. Appl. Phys. 117, 104506 (2015)

    Article  ADS  Google Scholar 

  29. YuG Gurevich, O.L. Mashkevich, Sov. Phys. Semicond. 24, 835 (1990)

    Google Scholar 

  30. V.S. Bochkov, YuG Gurevich, Sov. Phys. Semicond. 17, 456 (1983)

    Google Scholar 

  31. I. Lashkevich, O. Titov, YuG Gurevich, Semicond. Sci. Technol. 27, 055014 (2012)

    Article  ADS  Google Scholar 

  32. Y. Apertet, C. Goupil, Int. J. Therm. Sci. 104, 225 (2016)

    Article  Google Scholar 

  33. K.P. Pipe, R.J. Ram, A. Shakouri, Phys. Rev. B 66, 125316 (2002)

    Article  ADS  Google Scholar 

  34. F. Gibelli, L. Lombez, J. Rodiere, J.-F. Guillemoles, Phys. Rev. Appl. 5, 024005 (2016)

    Article  ADS  Google Scholar 

  35. R. Lundgren, G.A. Fiete, Phys. Rev. B 92, 125139 (2015)

    Article  ADS  Google Scholar 

  36. A.R. Ghiasvand, M. Pirdadeh-Beiranvand, Anal. Chim. Acta 900, 56 (2015)

    Article  Google Scholar 

  37. B. Plangklang, K. Wetchakan, Integr Ferroelectr 165, 86 (2015)

    Article  Google Scholar 

  38. A. Konin, R. Raguotis, Semicond. Sci. Technol. 15, 229 (2000)

    Article  ADS  Google Scholar 

  39. C. Goupil, Continuum Theory and Modeling of Thermoelectric Elements (Wiley-VCH, Berlin, 2016)

    Book  Google Scholar 

  40. B. Dutta, I.L. Pegg, S. Annamalai, R.P. Bhatta, J. Battogtokh, U.S. Patent US8,658,880 B2 (2014)

  41. B. Dutta, U.S. Patent US8,143,151 B2 (2012)

  42. B. Dutta, U.S. Patent US7,915,683 B2 (2011)

  43. B. Dutta, U.S. Patent US7,767,564 B2 (2010)

  44. B. Dutta, I.L. Pegg, R.K. Mohr, J. Battogtokh, U.S. Patent US7,559,215 B2 (2009)

Download references

Acknowledgments

The authors are grateful to Prof. Enrique Velazquez-Peres and Drs. I. N. Volovichev, A. Meriuts, and I. Lashkevych for remarks and fruitful discussions on issues covered in this paper. Yu.G.G. and O.Yu.T. are grateful to CONACYT (Mexico) for partial financial support. L.P.B. thanks the Ministry of Education and Science (Russia) for partial support (Grants RFMEFI57914X0039-14.579.21.0039, RFMEFI58415X0013-14.584.21.0013 and 3/912/2014/K).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Gurevich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titov, O.Y., Bulat, L.P. & Gurevich, Y.G. Nature of the Thermoelectric Power in Bipolar Semiconductors. Int J Thermophys 37, 86 (2016). https://doi.org/10.1007/s10765-016-2094-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-016-2094-5

Keywords

Navigation