Comparison of Photoacoustic Signals in Photosynthetic and Nonphotosynthetic Leaf Tissues of Variegated Pelargonium zonale

Abstract

Green-white variegated leaves of Pelargonium zonale were studied using the photoacoustic method. Our aim was to characterize photosynthetically active green tissue and nonphotosynthetically active white tissue by the photoacoustic amplitude signals. We observed lower stomatal conductance and higher leaf temperature in white tissue than in green tissue. Besides these thermal differences, significantly higher absorbance in green tissue was based on chlorophyll and carotenoids which were absent in white tissue. However, optical properties of epidermal layers of both tissues were equal. The photoacoustic amplitude of white tissue was over four times higher compared to green tissue, which was correlated with lower stomatal conductance. In addition, at frequencies >700 Hz, the significant differences between the photoacoustic signals of green and white tissue were obtained. We identified the photoacoustic signal deriving from photosynthetic oxygen evolution in green tissue, using high intensity of red light modulated at 10 Hz. Moreover, the photoacoustic amplitude of green tissue increased progressively with time which corresponded to the period of induction of photosynthetic oxygen evolution. For the first time, very high frequencies (1 kHz to 5 kHz) were applied on leaf material.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    N.R. Baker, Annu. Rev. Plant Physiol. 59, 89 (2008)

    Google Scholar 

  2. 2.

    A.R. Wellburn, J. Plant Physiol. 144, 307 (1994)

    Article  Google Scholar 

  3. 3.

    A.C. Pereira, M. Zerbelto, G.C. Silva, H. Vargas, W.J. da Silva, G. de Neto, N. Cella, L.C.M. Miranda, Meas. Sci. Technol. 3, 931 (1992)

    ADS  Article  Google Scholar 

  4. 4.

    C. Buschmann, H. Prehn, in Modern Methods of Plant Analysis, vol. 11 ed. by H.-F. Linskens, J.F. Jackson (Physical Methods in Plant Sciences), (Springer, Berlin, 1990), p. 148

  5. 5.

    H.J. Hou, T.P. Sakmar, Sensors 10, 5642 (2010)

    Article  Google Scholar 

  6. 6.

    C. Buschmann, H. Prehn, H.K. Lichtenthaler, Photosynth. Res. 5, 29 (1984)

    Article  Google Scholar 

  7. 7.

    P. Helander, I. Lundström, D. McQueen, J. Appl. Phys. 51, 3841 (1980)

    ADS  Article  Google Scholar 

  8. 8.

    S.K. Herbert, T. Han, T.C. Vogelmann, Photosynth. Res. 66, 13 (2000)

    Article  Google Scholar 

  9. 9.

    M. Vargas-Luna, L. Madueño, G. Gutiérrez-Juárez, J. Bernal-Alvarado, M. Sosa, J.L. González-Solís, S. Sánchez-Rocha, V. Olalde-Portugal, J.J. Alvarado-Gil, P. Campos, Rev. Sci. Instrum. 74, 706 (2003)

    ADS  Article  Google Scholar 

  10. 10.

    W.J. da Silva, L.M. Prioli, A.C.N. Magalhaes, A.C. Pereira, H. Vargas, A.M. Mansanares, N. Cella, L.C.M. Miranda, J.J. Alvarado Gil, Plant Sci. 104, 177 (1995)

    Article  Google Scholar 

  11. 11.

    G. Bults, B. Horwltz, S. Malkin, D. Cahen, Biochim. Biophys. Acta 679, 452 (1982)

    Article  Google Scholar 

  12. 12.

    A.C. Pereira, L.M. Príoli, W.J. da Silva, G.O. de Neto, H. Vargas, N. Cella, J.J. Alvarado Gil, Plant Sci. 96, 203 (1994)

    Article  Google Scholar 

  13. 13.

    A.C. Pereira, J.J. Alvarado-Gil, O. Zelaya, H. Vargas, N. Cella, J. Phys. IV 4, C7–527 (1994)

    Google Scholar 

  14. 14.

    M. Havaux, O. Canaani, S. Malkin, Plant Physiol. 82, 827 (1986)

    Article  Google Scholar 

  15. 15.

    C. Buschmann, Anal. Sci. Suppl. 17, s334 (2002)

    Google Scholar 

  16. 16.

    M. Havaux, K. Kloppstech, Planta 213, 953 (2001)

    Article  Google Scholar 

  17. 17.

    A. Baryla, P. Carrier, F. Franck, C. Coulomb, C. Sahut, M. Havaux, Planta 212, 696 (2001)

    Article  Google Scholar 

  18. 18.

    G. Ouzounidou, Plant Sci. 113, 229 (1996)

    Article  Google Scholar 

  19. 19.

    M. Vidović, F. Morina, S. Milić, A. Albert, B. Zechmann, T. Tosti, J.B. Winkler, S. Veljović-Jovanović, Plant Physiol. Biochem. 93, 44 (2015)

    Article  Google Scholar 

  20. 20.

    G. Tcherkez, F. Guérard, F. Gilard, M. Lamothe, C. Mauve, E. Gout, R. Bligny, Funct. Plant Biol. 39, 959 (2012)

    Article  Google Scholar 

  21. 21.

    C. Abadie, M. Lamothe, C. Mauve, F. Gilard, G. Tcherkez, Funct. Plant Biol. 42, 543 (2015)

    Article  Google Scholar 

  22. 22.

    D.M. Todorović, M.D. Rabasovic, D.D. Markushev, M. Sarajli, J. Appl. Phys. 116, 053506 (2014)

    ADS  Article  Google Scholar 

  23. 23.

    H.G. Jones, Plant Cell Environ. 22, 1043 (1999)

    Article  Google Scholar 

  24. 24.

    K. Omasa, K. Takayama, Plant Cell Physiol. 44, 1290 (2003)

    Article  Google Scholar 

  25. 25.

    L. McAusland, P.A. Davey, N. Kanwal, N.R. Baker, T. Lawson, J. Exp. Bot. 64, 4993 (2013)

    Article  Google Scholar 

  26. 26.

    J.M. Costa, O.M. Grant, M.M. Chaves, J. Exp. Bot. 64, 3937 (2013)

    Article  Google Scholar 

  27. 27.

    O. Urban, M. Košvancová, M.V. Marek, H.K. Lichtenthaler, Tree Physiol. 27, 1207 (2007)

    Article  Google Scholar 

  28. 28.

    E.M. Nagel, C. Buschmann, H.K. Lichthenthaler, Physiol. Plant. 70, 427 (1987)

    Article  Google Scholar 

  29. 29.

    C.H. Foyer, J. Neukermans, G. Queval, G. Noctor, J. Harbinson, J. Exp. Bot. 63, 1637 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Science and Technological Development of Republic of Serbia (Projects Nos. III43010 and OI171016).

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Veljović-Jovanović.

Additional information

This article is part of the selected papers presented at the 18th International Conference on Photoacoustic and Photothermal Phenomena.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Veljović-Jovanović, S., Vidović, M., Morina, F. et al. Comparison of Photoacoustic Signals in Photosynthetic and Nonphotosynthetic Leaf Tissues of Variegated Pelargonium zonale . Int J Thermophys 37, 91 (2016). https://doi.org/10.1007/s10765-016-2092-7

Download citation

Keywords

  • Pelargonium zonale
  • Photoacoustic method
  • Photosynthesis
  • Stomatal conductance
  • Thermal imaging
  • Variegated plants