Comparison of Photoacoustic Signals in Photosynthetic and Nonphotosynthetic Leaf Tissues of Variegated Pelargonium zonale

  • S. Veljović-JovanovićEmail author
  • M. Vidović
  • F. Morina
  • Lj. Prokić
  • D. M. Todorović
Part of the following topical collections:
  1. ICPPP-18: Selected Papers of the 18th International Conference on Photoacoustic and Photothermal Phenomena


Green-white variegated leaves of Pelargonium zonale were studied using the photoacoustic method. Our aim was to characterize photosynthetically active green tissue and nonphotosynthetically active white tissue by the photoacoustic amplitude signals. We observed lower stomatal conductance and higher leaf temperature in white tissue than in green tissue. Besides these thermal differences, significantly higher absorbance in green tissue was based on chlorophyll and carotenoids which were absent in white tissue. However, optical properties of epidermal layers of both tissues were equal. The photoacoustic amplitude of white tissue was over four times higher compared to green tissue, which was correlated with lower stomatal conductance. In addition, at frequencies >700 Hz, the significant differences between the photoacoustic signals of green and white tissue were obtained. We identified the photoacoustic signal deriving from photosynthetic oxygen evolution in green tissue, using high intensity of red light modulated at 10 Hz. Moreover, the photoacoustic amplitude of green tissue increased progressively with time which corresponded to the period of induction of photosynthetic oxygen evolution. For the first time, very high frequencies (1 kHz to 5 kHz) were applied on leaf material.


Pelargonium zonale Photoacoustic method Photosynthesis Stomatal conductance Thermal imaging Variegated plants 



This work was supported by the Ministry of Education, Science and Technological Development of Republic of Serbia (Projects Nos. III43010 and OI171016).


  1. 1.
    N.R. Baker, Annu. Rev. Plant Physiol. 59, 89 (2008)Google Scholar
  2. 2.
    A.R. Wellburn, J. Plant Physiol. 144, 307 (1994)CrossRefGoogle Scholar
  3. 3.
    A.C. Pereira, M. Zerbelto, G.C. Silva, H. Vargas, W.J. da Silva, G. de Neto, N. Cella, L.C.M. Miranda, Meas. Sci. Technol. 3, 931 (1992)ADSCrossRefGoogle Scholar
  4. 4.
    C. Buschmann, H. Prehn, in Modern Methods of Plant Analysis, vol. 11 ed. by H.-F. Linskens, J.F. Jackson (Physical Methods in Plant Sciences), (Springer, Berlin, 1990), p. 148Google Scholar
  5. 5.
    H.J. Hou, T.P. Sakmar, Sensors 10, 5642 (2010)CrossRefGoogle Scholar
  6. 6.
    C. Buschmann, H. Prehn, H.K. Lichtenthaler, Photosynth. Res. 5, 29 (1984)CrossRefGoogle Scholar
  7. 7.
    P. Helander, I. Lundström, D. McQueen, J. Appl. Phys. 51, 3841 (1980)ADSCrossRefGoogle Scholar
  8. 8.
    S.K. Herbert, T. Han, T.C. Vogelmann, Photosynth. Res. 66, 13 (2000)CrossRefGoogle Scholar
  9. 9.
    M. Vargas-Luna, L. Madueño, G. Gutiérrez-Juárez, J. Bernal-Alvarado, M. Sosa, J.L. González-Solís, S. Sánchez-Rocha, V. Olalde-Portugal, J.J. Alvarado-Gil, P. Campos, Rev. Sci. Instrum. 74, 706 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    W.J. da Silva, L.M. Prioli, A.C.N. Magalhaes, A.C. Pereira, H. Vargas, A.M. Mansanares, N. Cella, L.C.M. Miranda, J.J. Alvarado Gil, Plant Sci. 104, 177 (1995)CrossRefGoogle Scholar
  11. 11.
    G. Bults, B. Horwltz, S. Malkin, D. Cahen, Biochim. Biophys. Acta 679, 452 (1982)CrossRefGoogle Scholar
  12. 12.
    A.C. Pereira, L.M. Príoli, W.J. da Silva, G.O. de Neto, H. Vargas, N. Cella, J.J. Alvarado Gil, Plant Sci. 96, 203 (1994)CrossRefGoogle Scholar
  13. 13.
    A.C. Pereira, J.J. Alvarado-Gil, O. Zelaya, H. Vargas, N. Cella, J. Phys. IV 4, C7–527 (1994)Google Scholar
  14. 14.
    M. Havaux, O. Canaani, S. Malkin, Plant Physiol. 82, 827 (1986)CrossRefGoogle Scholar
  15. 15.
    C. Buschmann, Anal. Sci. Suppl. 17, s334 (2002)Google Scholar
  16. 16.
    M. Havaux, K. Kloppstech, Planta 213, 953 (2001)CrossRefGoogle Scholar
  17. 17.
    A. Baryla, P. Carrier, F. Franck, C. Coulomb, C. Sahut, M. Havaux, Planta 212, 696 (2001)CrossRefGoogle Scholar
  18. 18.
    G. Ouzounidou, Plant Sci. 113, 229 (1996)CrossRefGoogle Scholar
  19. 19.
    M. Vidović, F. Morina, S. Milić, A. Albert, B. Zechmann, T. Tosti, J.B. Winkler, S. Veljović-Jovanović, Plant Physiol. Biochem. 93, 44 (2015)CrossRefGoogle Scholar
  20. 20.
    G. Tcherkez, F. Guérard, F. Gilard, M. Lamothe, C. Mauve, E. Gout, R. Bligny, Funct. Plant Biol. 39, 959 (2012)CrossRefGoogle Scholar
  21. 21.
    C. Abadie, M. Lamothe, C. Mauve, F. Gilard, G. Tcherkez, Funct. Plant Biol. 42, 543 (2015)CrossRefGoogle Scholar
  22. 22.
    D.M. Todorović, M.D. Rabasovic, D.D. Markushev, M. Sarajli, J. Appl. Phys. 116, 053506 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    H.G. Jones, Plant Cell Environ. 22, 1043 (1999)CrossRefGoogle Scholar
  24. 24.
    K. Omasa, K. Takayama, Plant Cell Physiol. 44, 1290 (2003)CrossRefGoogle Scholar
  25. 25.
    L. McAusland, P.A. Davey, N. Kanwal, N.R. Baker, T. Lawson, J. Exp. Bot. 64, 4993 (2013)CrossRefGoogle Scholar
  26. 26.
    J.M. Costa, O.M. Grant, M.M. Chaves, J. Exp. Bot. 64, 3937 (2013)CrossRefGoogle Scholar
  27. 27.
    O. Urban, M. Košvancová, M.V. Marek, H.K. Lichtenthaler, Tree Physiol. 27, 1207 (2007)CrossRefGoogle Scholar
  28. 28.
    E.M. Nagel, C. Buschmann, H.K. Lichthenthaler, Physiol. Plant. 70, 427 (1987)CrossRefGoogle Scholar
  29. 29.
    C.H. Foyer, J. Neukermans, G. Queval, G. Noctor, J. Harbinson, J. Exp. Bot. 63, 1637 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • S. Veljović-Jovanović
    • 1
    Email author
  • M. Vidović
    • 1
  • F. Morina
    • 1
  • Lj. Prokić
    • 2
  • D. M. Todorović
    • 1
  1. 1.Department of Materials Science, Institute for Multidisciplinary ResearchUniversity of BelgradeBelgradeSerbia
  2. 2.Faculty of AgricultureUniversity of BelgradeBelgradeSerbia

Personalised recommendations