Skip to main content
Log in

Interrelation of Entropic Contributors to \(\pi \)-Stacking in Solution

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The recently published most complete set of thermodynamical data on self- and hetero-complexation of aromatic molecules measured under comparable experimental conditions were analyzed. The main aim of this study is to get insights into contribution of various entropic factors to \(\pi \)-stacking in aqueous solution. It was found that the experimental entropy change on \(\pi \)-stacking is determined by counterbalancing effects of two principal factors, i.e., the hydrophobic interaction (positive contribution) and the loss of degrees of freedom (negative contribution) modulated by the electrostatic contribution. Other factors, including the mixing entropy contribution, were shown to be less important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M.L. Waters, Aromatic interactions in model systems. Curr. Opin. Chem. Biol. 6, 736–741 (2002)

    Article  Google Scholar 

  2. E.A. Meyer, R.K. Castellano, F. Diederich, Interactions with aromatic rings in chemical and biological recognition. Angew. Chem. Int. Ed. 42, 1210–1250 (2003)

    Article  Google Scholar 

  3. H.-J. Schneider, Binding mechanisms in supramolecular complexes. Angew. Chem. Int. Ed. 48, 3924–3977 (2009)

    Article  Google Scholar 

  4. S.L. Cockroft, C.A. Hunter, Chemical double-mutant cycles: dissecting non-covalent interactions. Chem. Soc. Rev. 36, 172–188 (2007)

    Article  Google Scholar 

  5. E. Buisine, K. de Villiers, T.G. Egan, C. Biot, Solvent-induced effects: self-association of positively charged \(\pi \) systems. J. Am. Chem. Soc. 128, 12122–12128 (2006)

    Article  Google Scholar 

  6. V.V. Kostjukov, N.M. Khomytova, A.A. Hernandez Santiago, A.-M. Cervantes Tavera, Alvarado J. Salas, M.P. Evstigneev, Parsing of the free energy of aromatic-aromatic stacking interactions in solution. J. Chem. Thermodyn. 43, 1424–1434 (2011)

    Article  Google Scholar 

  7. I. Turcu, M. Bogdan, Size dependence of molecular self-assembling in stacked aggregates. 1. NMR investigation of ciprofloxacin self-association. J. Phys. Chem. B 116, 6488–6498 (2012)

    Article  Google Scholar 

  8. M.P. Evstigneev, A.S. Buchelnikov, The role of mixing entropy in molecular self-assembly. Chem. Phys. Lett. 567, 48–49 (2013)

    Article  ADS  Google Scholar 

  9. D.A. Beshnova, A.O. Lantushenko, D.B. Davies, M.P. Evstigneev, Profiles of equilibrium constants for self-association of aromatic molecules. J. Chem. Phys. 130, 165105–7 (2009)

    Article  ADS  Google Scholar 

  10. L. Tavagnacco, U. Schnupf, P.E. Mason, M.-L. Saboungi, A. Cesàro, J.W. Brady, Molecular dynamics simulation studies of caffeine aggregation in aqueous solution. J. Phys. Chem. B 115, 10957–10966 (2011)

    Article  Google Scholar 

  11. D.M. Ford, Enthalpy-entropy compensation is not a general feature of weak association. J. Am. Chem. Soc. 127, 16167–16170 (2005)

    Article  Google Scholar 

  12. YuI Prylutskyy, S.S. Durov, L.A. Bulavin, I.I. Adamenko, K.O. Moroz, I.I. Geru, I.N. Dihor, P. Scharff, P.C. Eklund, L. Grigorian, Structure and thermophysical properties of fullerene C60 aqueous solutions. Int. J. Thermophys. 22, 943–956 (2001)

    Article  Google Scholar 

  13. D.P. Voronin, A.S. Buchelnikov, V.V. Kostjukov, S.V. Khrapatiy, D. Wyrzykowski, J. Piosik, Y.I. Prylutskyy, U. Ritter, Evidence of entropically driven \(\text{ C }_{60}\) fullerene aggregation in aqueous solution. J. Chem. Phys. 140, 104909–5 (2014)

    Article  ADS  Google Scholar 

  14. YuI Prylutskyy, I.S. Pashkova, D. Wyrzykowski, A. Woziwodzka, G. Gołuński, J. Piosik, V.V. Cherepanov, U. Ritter, Characterization of \(\text{ C }_{60}\) fullerene complexation with antibiotic doxorubicin. Phys. Chem. Chem. Phys. 16, 23164–23172 (2014)

    Article  Google Scholar 

  15. C.R. Martinez, B.L. Iverson, Rethinking the term ‘pi-stacking’. Chem. Sci. 3, 2191–2201 (2012)

    Article  Google Scholar 

  16. M.P. Evstigneev, Hetero-association of aromatic molecules in aqueous solution. Int. Rev. Phys. Chem. 33, 229–273 (2014)

    Article  Google Scholar 

  17. I. Turcu, M. Mic, Size dependence of molecular self-assembling in stacked aggregates. 2. Heat exchange effects. J. Phys. Chem. B 117, 9083–9093 (2013)

    Article  Google Scholar 

  18. Z. Fülöp, R. Gref, T. Loftsson, A permeation method for detection of self-aggregation of doxorubicin in aqueous environment. Int. J. Pharm. 454, 559–561 (2013)

    Article  Google Scholar 

  19. K. Gallagher, K. Sharp, Electrostatic contributions to heat capacity changes of DNA-ligand binding. Biophys. J. 75, 769–776 (1998)

    Article  ADS  Google Scholar 

  20. S.L. Cockroft, J. Perkins, C. Zonta, H. Adams, S.E. Spey, C.M.R. Low, J.G. Vinter, K.R. Lawson, C.J. Urch, C.A. Hunter, Substituent effects on aromatic stacking interactions. Org. Biomol. Chem. 5, 1062–1080 (2007)

    Article  Google Scholar 

  21. R.B. Martin, Comparisons of indefinite self-association models. Chem. Rev. 96, 3043–3064 (1996)

    Article  Google Scholar 

  22. A.A. Mosunov, K.A. Rybakova, O.V. Rogova, M.P. Evstigneev, Binding polynomial in molecular self-assembly. Phys. Rev. E 89, 062138–4 (2014)

    Article  ADS  Google Scholar 

  23. A.V. Tobolsky, P.J. Blatz, Thermodynamics of linearly associated systems. J. Chem. Phys. 13, 379–380 (1945)

    Article  ADS  Google Scholar 

  24. M.P. Evstigneev, V.P. Evstigneev, D.B. Davies, A method for analysis of multicomponent systems of interacting aromatic molecules. J. Chem. Phys. 127, 154511–7 (2007)

    Article  ADS  Google Scholar 

  25. V.P. Evstigneev, A.A. Mosunov, A.S. Buchelnikov, A.A. Hernandez Santiago, M.P. Evstigneev, Complete solution of the problem of one-dimensional non-covalent non-cooperative self-assembly in two-component systems. J. Chem. Phys. 134, 194902–7 (2011)

    Article  Google Scholar 

  26. A.A. Hernandez Santiago, A.S. Buchelnikov, M.A. Rubinson, S.O. Yesylevskyy, J.A. Parkinson, M.P. Evstigneev, Shape-independent model (SHIM) approach for studying aggregation by NMR diffusometry. J. Chem. Phys. 142, 104202–13 (2015)

    Article  Google Scholar 

  27. A. Tamura, P.L. Privalov, The entropy cost of protein association. J. Mol. Biol. 273, 1048–1060 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

The basic part of State order for research (N2015/702) is thanked for support. Dr. I. Laponogov (Imperial College London, UK) is thanked for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim P. Evstigneev.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 47 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starodub, M.A., Lantushenko, A.O., Evstigneev, V.P. et al. Interrelation of Entropic Contributors to \(\pi \)-Stacking in Solution. Int J Thermophys 37, 77 (2016). https://doi.org/10.1007/s10765-016-2086-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-016-2086-5

Keywords

Navigation