Skip to main content
Log in

\(\hbox {RuO}_{2}\) Non-isothermal Thermometry

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The use of a \(\hbox {RuO}_{2}\) resistor in non-isothermal measuring setup is proposed. A calculation is presented to explain the principle for a resistor obeying variable-range-hopping theory and the results are compared to measurements in the range of 11.2–30 mK for a commercial resistor. The thermometer, which measures the electron temperature, does not show overheating effects at 11.2 mK with a measuring power of \(10^{-12}\) W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Ventura, L. Risegari, The Art of Cryogenics (Elsevier, Oxford, 2008)

    Google Scholar 

  2. J. Korringa, Nuclear magnetic relaxation and resonance line shift in metals. Physica 16, 601–610 (1950)

    Article  ADS  MATH  Google Scholar 

  3. T.A. Knuuttila, J.T. Tuoriniemi, K. Lefmann, K.I. Juntunen, F.B. Rasmussen, K.K. Nummila, Polarized nuclei in normal and superconducting Rhodium. J. Low Temp. Phys. 123, 65–102 (2001)

    Article  ADS  Google Scholar 

  4. H.E. Viertiö, A.S. Oja, Ground state of nuclear spins in fcc metals. Phys. Rev. B 36, 3805–3808 (1987)

    Article  ADS  Google Scholar 

  5. J.T. Tuoriniemi, T.A. Knuuttila, Nuclear cooling and spin properties of Rhodium down to picoKelvin temperatures. Phys. B 280, 474–478 (2000)

    Article  ADS  Google Scholar 

  6. H.E. Viertiö, A.S. Oja, Nuclear antiferromagnetism in Copper: interplay of (0,2/3,2/3) and (1,0,0) order. Phys. Rev. B 42, 6857–6860 (1990)

    Article  ADS  Google Scholar 

  7. A.M.S. Tremblay, F. Vidal, Fluctuations in dissipative steady states of thin metallic films. Phys. Rev. B 25, 7562 (1982)

    Article  ADS  Google Scholar 

  8. R.A. Webb, R.P. Giffard, J.C. Wheatley, Noise thermometry at ultralow temperatures. J. Low Temp. Phys. 13, 383 (1973)

    Article  ADS  Google Scholar 

  9. V.A. Shklovskij, Hot electrons in metals at low temperatures. J. Low Temp. Phys. 41, 375 (1980)

    Article  ADS  Google Scholar 

  10. M.L. Roukes et al., Hot electrons and energy transport in metals at milliKelvin temperatures. Phys. Rev. Lett. 55, 422–425 (1985)

    Article  ADS  Google Scholar 

  11. J. Beyer et al., Reference measurements of SQUID-based magnetic-field fluctuation thermometers. Supercond. Sci. Technol. 26, 065010 (2013)

    Article  ADS  Google Scholar 

  12. G. Grimvall, The Electron–Phonon Interaction in Metals (North Holland Publishing Company, Oxford, 1981)

    Google Scholar 

  13. J. Custers et al., Destruction of the Kondo effect in the cubic heavy-fermion compound \({\rm Ce}_{3}{\rm Pd}_{20}{\rm Si}_{6}\). Nat. Mater. 11, 189–194 (2012)

    Article  ADS  Google Scholar 

  14. S. Hartmann et al., Thermopower evidence for an abrupt Fermi surface change at the quantum critical point of \({\rm YbRh}_{2}{\rm Si}_{2}\). Phys. Rev. Lett. 104, 096401 (2010)

    Article  ADS  Google Scholar 

  15. T. Cichorek et al., Electron scattering off structural two-level systems in \({\rm ZrAs}_{1.595}{\rm Se}_{0.393}\). J. Phys. 200, 012021 (2010)

    Google Scholar 

  16. D.H. Nguyen, A. Sidorenko, M. Müller, S. Paschen, A. Waard, G. Frossati, The Vienna nuclear demagnetization refrigerator. J. Phys. 400, 052024 (2012)

    Google Scholar 

  17. F. Pobell, Matter and Methods at Low Temperatures, 3rd edn. (Springer, Berlin, 2007)

    Book  Google Scholar 

  18. A. Briggs, Characterization of some chip resistors at low temperatures. Cryogenics 31, 932 (1991)

    Article  ADS  Google Scholar 

  19. B.I. Shklovskii, A.L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984)

    Book  Google Scholar 

  20. N.F. Mott, Metal-Insulator Transitions (Taylor & Francis, Park Drive, 1974)

    Google Scholar 

  21. J. Roman et al., Electronic transport in \({\rm RuO}_{2}\)-based thick film resistors at low temperatures. J. Low Temp. Phys. 108, 373–382 (1997)

    Article  ADS  Google Scholar 

  22. J.P. Gonzalez-Vazquez, J.A. Anta, J. Bisquert, Random walk numerical simulation for hopping transport at finite carrier concentrations: diffusion coefficient and transport energy concept. Phys. Chem. 11, 10359–10367 (2009)

    Google Scholar 

  23. V.I. Arkhipov, E.V. Emelianova, G.J. Adriaenssens, Effective transport energy versus the energy of most probable jumps in disordered hopping systems. Phys. Rev. B 64, 125125 (2001)

    Article  ADS  Google Scholar 

  24. S.W. Van Sciver, M.N. Nellis, J. Pfotenhauer, Thermal and electrical contact conductance between metals at low temperatures. In Proceedings Space Cryogenics Workshop, Germany (1984)

Download references

Acknowledgments

We wish to thank Silke Bühler Paschen and Vincenzo Natale for the useful discussion.

This work has been partially supported by the Lucifer Experiment funded from the European Research Council under the European Unions Seventh Framework Program (FP7/2007-2013)/ERC Grant Agreement No. 247115

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Giomi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ventura, G., Giomi, S. \(\hbox {RuO}_{2}\) Non-isothermal Thermometry. Int J Thermophys 37, 88 (2016). https://doi.org/10.1007/s10765-016-2076-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-016-2076-7

Keywords

Navigation