Advertisement

Isobaric Heat Capacity, Isothermal Compressibility and Fluctuational Properties of 1-Bromoalkanes

  • V. I. Korotkovskii
  • O. S. Ryshkova
  • Yu. A. Neruchev
  • A. L. Goncharov
  • E. B. Postnikov
Article

Abstract

We present results of the experimental measurements of the isobaric heat capacity for 1-bromohexane, 1-bromoheptane, 1-bromooctane, 1-bromononane, 1-bromodecane, 1-bromoundecane, 1-bromododecane and 1-bromotetradecane at normal pressure and the speed of sound and the density for 1-bromotetradecane within the temperature range 298.15–423.15 K. These data on the isobaric heat capacity and the literature-based reference data for the density and the speed of sound were used to calculate the isothermal compressibility and the inverse reduced fluctuations. Based on the comparison of the results for pure n-alkanes and \(\alpha ,\omega \)-dibromoalkanes, we discuss the influence of bromine atom on the volume fluctuations.

Keywords

Intermolecular interactions Isobaric heat capacity Volume fluctuations 

Notes

Acknowledgments

We are grateful to the participants of 11th Winter Workshop on Molecular Acoustics, Relaxation and Calorimetric Methods (03-06.03.2015, Szczyrk, Poland), where the preliminary version of this work has been presented, for fruitful discussions. The work is supported by RFBR, research project No. 16-08-01203.

References

  1. 1.
    A.J. Matheson, Molecular Acoustics (Wiley, New York, 1971)Google Scholar
  2. 2.
    U. Kaatze, F. Eggers, K. Lautscham, Meas. Sci. Technol. 19, 062001 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    R.D. Weir, T.W. de Loos (eds.), Measurement of the Thermodynamic Properties of Multiple Phases (Elsevier, Amsterdam, 2005)Google Scholar
  4. 4.
    A.L. Goncharov, V.V. Melent’ev, E.B. Postnikov, Eur. Phys. J. B 86, 357 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    M.G. Martin, J.I. Siepmann, J. Phys. Chem. B 102, 2569 (1998)CrossRefGoogle Scholar
  6. 6.
    C.A. Cerdeiriña, D. González-Salgado, L. Romaní, M. del Carmen Delgado, L.A. Torres, M. Costas, J. Chem. Phys. 120, 6648 (2004)Google Scholar
  7. 7.
    Y.A. Neruchev, M.F. Bolotnikov, High Temp. 46, 40 (2008)CrossRefGoogle Scholar
  8. 8.
    S. Ernst, M. Chora̧żewski, M. Tkaczyk, P. Góralski, Fluid Phase Equilib. 174(1), 33 (2000)Google Scholar
  9. 9.
    M.F. Bolotnikov, Y.A. Neruchev, O.S. Ryshkova, J. Chem. Eng. Data 52, 1065 (2007)CrossRefGoogle Scholar
  10. 10.
    O.S. Ryshkova, Y.A. Neruchev, High Temp. 47, 664 (2009)CrossRefGoogle Scholar
  11. 11.
    M.F. Bolotnikov, Y.A. Neruchev, O.S. Ryshkova, Y.E. Shevchenko, J. Chem. Eng. Data 54, 1716 (2009)CrossRefGoogle Scholar
  12. 12.
    M. Chora̧żewski, M. Skrzypek, Int. J. Thermophys. 31, 26 (2010)Google Scholar
  13. 13.
    M. Chora̧żewski, E.B. Postnikov, Int. J. Thermal Sci. 90, 62 (2015)Google Scholar
  14. 14.
    Y.A. Neruchev, O.S. Ryshkova, V.I. Korotkovskii, A.E. Lebedev, S.Y. E., GSSSD ME 197 (State Service of Standard Reference Data: Experimental Techniques, 197) (Moscow: STANDARTINFORM) (2012)Google Scholar
  15. 15.
    G. Höhne, W.F. Hemminger, H.J. Flammersheim, Differential Scanning Calorimetry (Springer, Berlin, 2013)Google Scholar
  16. 16.
    The NIST Chemistry WebBook provides access to data compiled and distributed by NIST under the Standard Reference Data Program, http://webbook.nist.gov
  17. 17.
    Y.A. Neruchev, M.F. Bolotnikov, V.V. Zotov, High Temp. 43, 266 (2005)CrossRefGoogle Scholar
  18. 18.
    Y.A. Neruchev, V.V. Zotov, V.N. Verveiko, G.A. Mel’nikov, Y.F. Melikhov, M.V. Verveiko, GSSSD ME 155 (State Service of Standard Reference Data: Experimental Techniques, 155) (STANDARTINFORM, Moscow, 2009)Google Scholar
  19. 19.
    M. Chora̧żewski, P. Góralski, M. Tkaczyk, J. Chem. Eng. Data 50, 619 (2005)Google Scholar
  20. 20.
    L. Becker, O. Aufderhaar, J. Gmehling, J. Chem. Eng. Data 45, 661 (2000)CrossRefGoogle Scholar
  21. 21.
    E.B. Postnikov, A.L. Goncharov, V.V. Melentv, Int. J. Thermophys. 35(11), 2115 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    P.J. Flory, R.A. Orwoll, A. Vrij, J. Am. Chem. Soc. 86, 3507 (1964)CrossRefGoogle Scholar
  23. 23.
    T.K. Zahariev, R.I. Slavchov, A.V. Tadjer, A.N. Ivanova, J. Comput. Chem. 35, 776 (2014)CrossRefGoogle Scholar
  24. 24.
    M. Chora̧żewski, E.B. Postnikov, K. Oster, I. Polishuk, Ind. Eng. Chem. Res. 54, 9645 (2015)Google Scholar
  25. 25.
    E.B. Bagley, T.P. Nelson, J.W. Barlow, S.A. Chen, Ind. Eng. Chem. Fundam. 9, 93 (1970)CrossRefGoogle Scholar
  26. 26.
    V.N. Kartsev, S.N. Shtykov, K.E. Pankin, D.V. Batov, J. Struct. Chem. 53, 1087 (2012)CrossRefGoogle Scholar
  27. 27.
    Y. Marcus, Chem. Rev. 113, 6536 (2013)CrossRefGoogle Scholar
  28. 28.
    H.V. Kehiaian, Fluid Phase Equilib. 13, 243 (1983)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Laboratory of Molecular AcousticsKursk State UniversityKurskRussia
  2. 2.Department of Theoretical PhysicsKursk State UniversityKurskRussia

Personalised recommendations