Skip to main content
Log in

Thermal Diffusivity of Sintered Steels with Flash Method at Ambient Temperature

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Due to lack of reliable thermal diffusivity data of sintered steels in literature, experimental investigations were conducted on samples made of different powder types (based on prealloyed, or diffusion-bonded, or admixed powders) and under different process conditions. So the influence of pressing pressure and sintering temperature on thermal diffusivity was established. Thermal diffusivity was measured using the “flash method”: a sample in the shape of a slab is irradiated with a light pulse on one of the two surfaces, and temperature of the other surface is detected by an ambient temperature pyrometer. The value of the thermal diffusivity is obtained by a least squares regression on the entire trend of the temperature vs. time using the analytical solution of the heat conduction as regression model. Results show the increase of the thermal diffusivity with increasing density. This outcome can be explained from the mutual effect of thermal conductivity and density on thermal diffusivity in porous media. The experimental results have also permitted to verify the influence of the composition of the sintered materials and carbon contents on thermal diffusivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

c :

Specific heat, J\({\cdot }\)(kg\({\cdot }\)K)\(^{-1}\)

k :

Thermal conductivity, W\({\cdot }\)(mK)\(^{-1}\)

L :

Sample thickness, m

t :

Time, s

T :

Temperature, K or \(^{\circ }\hbox {C}\)

x :

Abscissa, m

\(\alpha \) :

Thermal diffusivity, \(\hbox {m}^{2}{\cdot }\hbox {s}^{-1}\)

\(\varepsilon \) :

Porosity, \(\hbox {m}^{3}{\cdot }\hbox {m}^{-3}\)

\(\rho \) :

Density, \(\hbox {kg}{\cdot }\hbox {m}^{-3}\)

fd :

Fully dense metal or alloy

s :

Sintered metal (or alloy)

v :

Void

References

  1. R. Chadwick, E.R. Broadfield, Iron Steel Inst., Spec. Rep. Nr., 38. (London, 1947), pp. 123–41

  2. R. Kieffer, W. Hotop (eds.), Sintereisen und Sinterstahl, (Springer, WSien, 1998), p. 409

  3. G. Bockstiegel, O. Struglics, Influence of various alloying additions on case hardening of sintered steel parts. PM Conference, Stary Smokevec (Cecoslovakia), 26 September 1966

  4. W.B. James, What is sinter-hardening. in Proceedings of International Conference on Powder Metallurgy & Particulate Materials PM2TEC. (1998), pp. 55–60

  5. C. Gierl, M.S. Gonzalez, J. Schmidt, E. Specht, H. Danninger, Int. J. Powder Metall. 47, 31–39 (2011)

    Google Scholar 

  6. P. Beiss, U. Kutsch, H.J. Jager, F. Schmitz, H. Maier, Thermal Conductivity of Sintered Stainless Steel 316L. Proc. EPMA, Shrewsbury, vol. 3 (PM World Congress. Granada, 1998), pp. 425–435

  7. S. Saritas, R.D. Doherty, A. Lawley, Int. J. Powder Metall. 38, 31–40 (2002)

    Google Scholar 

  8. G.F. Bocchini, A. Baggioli, B. Rivolta, G. Silva, P. Piccardo, M.R. Pinasco, E. Stagno, Influence of Density and Surface/Volume Ratio on The Cooling Speed of Sinter-Hardening Materials. Part One: Numerical Analysis of Parallelepipeds (PM World Congress, Orlando, USA, 2002)

  9. G.F. Bocchini, B. Rivolta, G. Silva, M.G. Ienco, E. Stagno, Influence of Density and Surface/Volume Ratio on the Cooling Speed of Sinter-Hardening Materials: Microstructure and Micro-hardness Distribution Inside Parallelepipeds (PM World Congress, Orlando, USA, 2002)

  10. G.F. Bocchini, A. Baggioli, R. Gerosa, B. Rivolta, G. Silva, Int. J. Powder Metall. 40, 57–65 (2004)

    Google Scholar 

  11. W.B. James, Microstructure Development, EPMA Summer School, EPMA PM Summer School, Acqui Terme (Italy), 22–29 June 2008

  12. W.J. Parker, R.J. Jenkis, C.P. Butter, G.L. Abbot, J. Appl. Phys. 32, 1679–1684 (1961)

    Article  ADS  Google Scholar 

  13. J.S. Hirschhorn, Introduction to Powder Metallurgy (APMI, New York, 1969), p. 267

    Google Scholar 

  14. Eucken, (1940). doi:10.1007/BF02584103

  15. F.L. Levy, Int. J. Refrig. 4, 223–225 (1981)

    Article  Google Scholar 

  16. M. Mattea, M.J. Urbicain, E. Rotstein, J. Food Sci. 51(1), 113–115 (1986)

    Article  Google Scholar 

  17. V.R. Tarnawski, T. Momose, W.H. Leong, G. Bovesecchi, P. Coppa, (2009). doi:10.1007/s10765-009-0596-0

  18. F. Gori, S. Corasaniti, J. Heat Trans. T ASME 124(6), 1001–1008 (2002)

    Article  Google Scholar 

  19. F. Gori, S. Corasaniti, W.M. Worek, W.J. Minkowycz, Appl. Therm. Eng. 49, 124–130 (2012)

    Article  Google Scholar 

  20. F. Gori, S. Corasaniti, Int. Commun. Heat Mass 47, 1–6 (2013)

    Article  Google Scholar 

  21. G.F. Bocchini, (1985). doi:10.4271/860148

  22. G.F. Bocchini, (1986), doi:10.4271/860148

  23. P. Beiss, (2012). doi:10.1007/10689123_16

  24. ASTM E1461–13, doi:10.1520/E1461

  25. F. Cernuschi, L. Lorenzoni, P. Bianchi, A. Figari, Infrared Phys. Technol. 43, 133–138 (2002)

    Article  ADS  Google Scholar 

  26. K.D. Maglic, R.E. Taylor, (1992). doi:10.1007/978-1-4615-3286-6_10

  27. S. Brandt, Statistical and Computational Methods in Data Analysis (North Holland Pub, Amsterdam, 1970)

    MATH  Google Scholar 

  28. R.D. Cowan, doi:10.1063/1.1729564

  29. A.J. Cape, G.W. Lehman, doi:10.1063/1.1729711

  30. ISO/IEC Guide 98, 3 (2008)

  31. S.M. Shelton, (1934). doi:10.6028/jres.012.042

Download references

Acknowledgments

The authors are in debt with companies Höganäs AB, (Höganäs, Sweden), Pometon SpA, (Maerne di Martellago, VE, Italy.) for the careful preparation of samples to be utilized in the investigation, and to Stame Srl, (Arosio, CO, Italy) for sintering the green specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bovesecchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bocchini, G.F., Bovesecchi, G., Coppa, P. et al. Thermal Diffusivity of Sintered Steels with Flash Method at Ambient Temperature. Int J Thermophys 37, 38 (2016). https://doi.org/10.1007/s10765-016-2050-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-016-2050-4

Keywords

Navigation