Non-equilibrium Thermodynamics of Rayleigh–Taylor Instability

Abstract

Here, the fundamental problem of Rayleigh–Taylor instability (RTI) is studied by direct numerical simulation (DNS), where the two air masses at different temperatures, kept apart initially by a non-conducting horizontal interface in a 2D box, are allowed to mix. Upon removal of the partition, mixing is controlled by RTI, apart from mutual mass, momentum, and energy transfer. To accentuate the instability, the top chamber is filled with the heavier (lower temperature) air, which rests atop the chamber containing lighter air. The partition is positioned initially at mid-height of the box. As the fluid dynamical system considered is completely isolated from outside, the DNS results obtained without using Boussinesq approximation will enable one to study non-equilibrium thermodynamics of a finite reservoir undergoing strong irreversible processes. The barrier is removed impulsively, triggering baroclinic instability by non-alignment of density, and pressure gradient by ambient disturbances via the sharp discontinuity at the interface. Adopted DNS method has dispersion relation preservation properties with neutral stability and does not require any external initial perturbations. The complete inhomogeneous problem with non-periodic, no-slip boundary conditions is studied by solving compressible Navier–Stokes equation, without the Boussinesq approximation. This is important as the temperature difference between the two air masses considered is high enough (\(\Delta T = 70\) K) to invalidate Boussinesq approximation. We discuss non-equilibrium thermodynamical aspects of RTI with the help of numerical results for density, vorticity, entropy, energy, and enstrophy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    M.J. Andrews, D.B. Spalding, A simple experiment to investigate two-dimensional mixing by Rayleigh–Taylor instability. Phys. Fluids A 2, 922–927 (1990)

    ADS  Article  Google Scholar 

  2. 2.

    G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1988)

    Google Scholar 

  3. 3.

    G.P. Beretta, Steepest entropy ascent model for far-nonequilibrium thermodynamics: unified implementation of the maximum entropy production principle. Phys. Rev. E 90, 042113 (2014)

    ADS  Article  Google Scholar 

  4. 4.

    G.P. Beretta, E. Zanchini, A general definition of thermodynamic entropy without heat and thermal reservoirs, J. E. T. C, in 13 Joint European Thermodynamics Conference, Nancy, May 20–22, 2015. France Abstracts 107 (2015)

  5. 5.

    S. Bhaumik, T.K. Sengupta, Precursor of transition to turbulence: spatiotemporal wave front. Phys. Rev. E 89, 043016 (2014)

    Article  Google Scholar 

  6. 6.

    A. Bhole, S. Sengupta, A. Sengupta, K.S. Shruti, N. Sharma, N. Sawant, in Rayleigh–Taylor instability of a miscible fluid at the interface: direct numerical simulation, ed. by T.K. Sengupta, S.K. Lele, K.R. Sreenivasan, P. Davidson. IUTAM Symposium Proceedings (World Scientific Publishing Company, Singapore, 2016)

  7. 7.

    G. Buresti, A note on Stokes’ hypothesis. Acta Mech. (2015). doi:10.1007/s00707-015-1380-9

    MathSciNet  MATH  Google Scholar 

  8. 8.

    W.H. Cabot, A.W. Cook, Reynolds number effects on Rayleigh–Taylor instability with implications for type 1a supernovae. Nature 2, 562–568 (2006)

    Google Scholar 

  9. 9.

    S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University Press, Oxford, 1961)

    Google Scholar 

  10. 10.

    A.W. Cook, W. Cabot, P.L. Miller, The mixing transition in Rayleigh–Taylor instability. J. Fluid Mech. 511, 333–362 (2004)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    S.B. Dalziel, P.F. Linden, D.L. Youngs, Self-similarity and internal structure of turbulence induced by Rayleigh–Taylor instability. J. Fluid Mech. 399, 1–48 (1999)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    P.A. Davidson, Turbulence (Oxford University Press, Oxford, 2004)

    Google Scholar 

  13. 13.

    C.R. Doering, J.D. Gibbon, Applied Analysis of the Navier–Stokes Equations (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  14. 14.

    P.G. Drazin, W.H. Reid, Hydrodynamic Stability (Cambridge University Press, Cambridge, 1981)

    Google Scholar 

  15. 15.

    M. Gad el Hak, Stokes’ hypothesis for a Newtonian, isotropic fluid. J. Fluids Eng. 117, 3–5 (1995)

    Article  Google Scholar 

  16. 16.

    K.A. Hoffmann, S.T. Chiang, Computational Fluid Dynamics, vol. II (Engineering Education Systems, Kansas, 1998)

    Google Scholar 

  17. 17.

    A.G.W. Lawrie, Rayleigh–Taylor mixing: confinement by stratification and geometry. PhD thesis, DAMTP, University of Cambridge, Cambridge (2009)

  18. 18.

    A.G.W. Lawrie, S.B. Dalziel, Rayleigh–Taylor mixing in an otherwise stable stratification. J. Fluid Mech. 688, 507–527 (2011)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    S.P. Mahulikar, H. Herwig, Exact thermodynamic principles for dynamic order existence and evolution in chaos. Chaos Solitons Fractals 41, 1939–1948 (2008)

    ADS  Article  Google Scholar 

  20. 20.

    L.M. Martyushev, V.D. Seleznev, Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 426, 1–45 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  21. 21.

    K.O. Mikaelian, Boussinesq approximation for Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Fluids 26, 054103 (2014)

    ADS  Article  Google Scholar 

  22. 22.

    I. Prigogine, Time, structure and fluctuations. Science 201, 777–785 (1978)

  23. 23.

    K.R. Rajagopal, A new development and interpretation of the Navier–Stokes fluid which reveals why the “Stokes assumption” is inapt. Intl. J. Non-Linear Mech. 50, 141–151 (2013)

    ADS  Article  Google Scholar 

  24. 24.

    P. Ramaprabhu, G. Dimonte, P. Woodward, C. Fryer, G. Rockefeller, K. Muthuram, P.H. Lin, J. Jayaraj, The late-time dynamics of the single-mode Rayleigh–Taylor instability. Phys. Fluids 24, 074107 (2012)

    ADS  Article  Google Scholar 

  25. 25.

    Lord Rayleigh, On the stability and instability of certain fluid motions. Sci. Papers 3, 17–23 (1887)

    Google Scholar 

  26. 26.

    K.I. Read, Experimental investigation of turbulent mixing by Rayleigh–Taylor instability. Physica D 12, 45–58 (1984)

    ADS  Article  Google Scholar 

  27. 27.

    S.J. Reckinger, D. Livescu, O.V. Vasilyev, Adaptive wavelet collocation method simulations of Rayleigh–Taylor instability. Phys. Scr. T 142, 014064 (2010)

    ADS  Article  Google Scholar 

  28. 28.

    M.A. Saad, Thermodynamics Principles and Practice (Prentice-Hall Inc., Upper Saddle River, 1997)

    Google Scholar 

  29. 29.

    E. Schroedinger, What is Life? The Physical Aspect of Living Cell (Cambridge University Press, Cambridge, 1945)

    Google Scholar 

  30. 30.

    T.K. Sengupta, Instabilities of Flows and Transition to Turbulence (Taylor and Francis Group, London, 2012)

    Google Scholar 

  31. 31.

    T.K. Sengupta, High Accuracy Computing Methods: Fluid Flows and Wave Phenomenon (Cambridge University Press, Cambridge, 2013)

    Google Scholar 

  32. 32.

    T.K. Sengupta, A. Dipankar, P. Sagaut, Error dynamics: beyond von Neumann analysis. J. Comput. Phys. 226, 1211–1218 (2007)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  33. 33.

    T.K. Sengupta, V.V.S.N. Vijay, S. Bhaumik, Further improvement and analysis of CCD scheme: dissipation discretization and de-aliasing properties. J. Comput. Phys. 228, 6150–6168 (2009)

    ADS  Article  MATH  Google Scholar 

  34. 34.

    T.K. Sengupta, M.K. Rajpoot, Y.G. Bhumkar, Space–time discretizing optimal DRP schemes for flow and wave propagation problems. Comput. Fluids 47, 144–154 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  35. 35.

    T.K. Sengupta, H. Singh, S. Bhaumik, R.R. Chowdhury, Diffusion in inhomogeneous flows: unique equilibrium state in an internal flow. Comput. Fluids 88, 440–451 (2013)

    MathSciNet  Article  Google Scholar 

  36. 36.

    T.K. Sengupta, A. Bhole, N.A. Sreejith, Direct numerical simulation of 2D transonic flows around airfoils. Comput. Fluids 88, 19–37 (2013)

    MathSciNet  Article  Google Scholar 

  37. 37.

    A.H. Shapiro, The Dynamics and Thermodynamics of Compressible Fluid Flow, vol. 1 (Ronald Press Co., New York, 1953)

    Google Scholar 

  38. 38.

    G.I. Taylor, The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc. R. Soc. Lond. 201, 192–196 (1950)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  39. 39.

    T. Wei, D. Livescu, Late-time quadratic growth in single-mode Rayleigh–Taylor instability. Phys. Rev. E. 86, 046405 (2012)

    ADS  Article  Google Scholar 

  40. 40.

    D.L. Youngs, Numerical simulation of turbulent mixing by Rayleigh–Taylor instability. Physica D 12, 32–44 (1984)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tapan K. Sengupta.

Additional information

This article is part of the 13th Joint European Thermodynamics Conference Special Issue.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sengupta, T.K., Sengupta, A., Sengupta, S. et al. Non-equilibrium Thermodynamics of Rayleigh–Taylor Instability. Int J Thermophys 37, 36 (2016). https://doi.org/10.1007/s10765-016-2045-1

Download citation

Keywords

  • Baroclinic instability
  • Boussinesq approximation
  • Compressible flow
  • Direct numerical simulation
  • Non-equilibrium thermodynamics
  • Non-periodic flow
  • Rayleigh–Taylor instability