Skip to main content
Log in

Binary Diffusion Coefficient Data of Various Gas Systems Determined Using a Loschmidt Cell and Holographic Interferometry

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The paper reports on binary diffusion coefficient data for the gaseous systems argon–neon, krypton–helium, ammonia–helium, nitrous oxide–nitrogen, and propane–helium measured using a Loschmidt cell combined with holographic interferometry between (293.15 and 353.15) K as well as between (1 and 10) bar. The investigations on the noble gas systems aimed to validate the measurement apparatus by comparing the binary diffusion coefficients measured as a function of temperature and pressure with theoretical data. In previous studies, it was already shown that the raw concentration-dependent data measured with the applied setup are affected by systematic effects if pure gases are used prior to the diffusion process. Hence, the concentration-dependent measurement data were processed to obtain averaged binary diffusion coefficients at a mean mole fraction of 0.5. The data for the molecular gas systems complete literature data on little investigated systems of technical interest and point out the capabilities of the applied measurement apparatus. Further experimental data are reported for the systems argon–helium, krypton–argon, krypton–neon, xenon–helium, xenon–krypton, nitrous oxide–carbon dioxide, and propane–carbon dioxide at 293.15 K, 2 bar, and a mean mole fraction of 0.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\(A_{\mathrm{R}1}\) :

First refractivity virial coefficient of component 1 (\(\hbox {m}^{3}{\cdot }\hbox {mol}^{-1}\))

\(A_{\mathrm{R}2}\) :

First refractivity virial coefficient of component 2 (\(\hbox {m}^{3}{\cdot }\hbox {mol}^{-1}\))

\(B_{11}\) :

Second pressure virial coefficient of component 1 (\(\hbox {m}^{3}{\cdot }\hbox {mol}^{-1}\))

\(B_{22}\) :

Second pressure virial coefficient of component 2 (\({\hbox {m}}^{3}{\cdot }\hbox {mol}^{-1}\))

\(B_{12}\) :

Mixed second pressure virial coefficient (\(\hbox {m}^{3}{\cdot }\hbox {mol}^{-1}\))

\(B_{\mathrm{mix}}\) :

Second pressure virial coefficient of the mixture (\(\hbox {m}^{3}{\cdot }\hbox {mol}^{-1}\))

\(B_{\mathrm{R}11}\) :

Second refractivity virial coefficient of component 1 (\(\hbox {m}^{6}{\cdot }\hbox {mol}^{-2}\))

\(B_{\mathrm{R}22}\) :

Second refractivity virial coefficient of component 2 (\(\hbox {m}^{6}{\cdot }\hbox {mol}^{-2}\))

\(B_{\mathrm{R}12}\) :

Mixed second refractivity virial coefficient (\(\hbox {m}^{6}{\cdot }\hbox {mol}^{-2}\))

\(C_{111}\) :

Third pressure virial coefficient of component 1 (\(\hbox {m}^{6}{\cdot }\hbox {mol}^{-2}\))

\(C_{112}\) :

Mixed third pressure virial coefficient (\(\hbox {m}^{6}{\cdot }\hbox {mol}^{-2}\))

\(C_{122}\) :

Mixed third pressure virial coefficient (\(\hbox {m}^{6}{\cdot }\hbox {mol}^{-2}\))

\(C_{222}\) :

Third pressure virial coefficient of component 2 (\({\hbox {m}}^{6}{\cdot }\hbox {mol}^{-2}\))

\(C_{\mathrm{mix}}\) :

Third pressure virial coefficient of the mixture (\(\hbox {m}^{6}{\cdot }\hbox {mol}^{-2}\))

\(D_{12}\) :

Binary diffusion coefficient (\(\hbox {m}^{2}{\cdot }\hbox {s}^{-1}\))

\(k_{\mathrm{mix}}\) :

Order of interference fringe

\(\Delta L_{\mathrm{opt}}\) :

Optical path length difference (m)

L :

Height (m)

l :

Depth (m)

\(\Delta n\) :

Refractive index difference

\(n_{0}\) :

Refractive index of pure component

\(n_{1}\) :

Amount of moles of component 1 (mol)

\(n_{1,0}\) :

Refractive index of component 1 prior to diffusion

\(n_{2,0}\) :

Refractive index of component 2 prior to diffusion

\(n_{\mathrm{mix}}\) :

Refractive index of the mixture

p :

Pressure (Pa)

s :

Width (m)

T :

Temperature (K)

t :

Time (s)

\(V_{1}\) :

Volume of the lower half-cell (\(\hbox {m}^{3}\))

\(V_{\mathrm{u}}\) :

Volume of the upper half-cell (\(\hbox {m}^{3}\))

\(x_{1}\) :

Mole fraction of component 1

z :

Local coordinate (m)

\(\lambda \) :

Wavelength (m)

\(\rho _{1}\) :

Partial molar density of component 1 (\(\hbox {mol}{\cdot }\hbox {m}^{-3}\))

\(\rho _{2}\) :

Partial molar density of component 2 (\(\hbox {mol}{\cdot }\hbox {m}^{-3}\))

\(\rho _{1}^\infty \) :

Molar density of component 1 at the end of the diffusion process (\(\hbox {mol}{\cdot }\hbox {m}^{-3}\))

\(\rho _{\mathrm{mix}}\) :

Molar density of the mixture (\(\hbox {mol}{\cdot }\hbox {m}^{-3}\))

\(\tau \) :

Characteristic diffusion time (s)

References

  1. D. Buttig, Dr.-Ing. Thesis, University of Rostock, Rostock (2010)

  2. W.J. Massman, Atmos. Environ. 32, 1111 (1998)

    Article  ADS  Google Scholar 

  3. C. Pizarro, O. Suárez-Iglesias, I. Medina, J.L. Bueno, J. Supercrit. Fluids 48, 1 (2009)

    Article  Google Scholar 

  4. W.S. McGivern, J.A. Manion, Combust. Flame 159, 3021 (2012)

    Article  Google Scholar 

  5. K. Kerl, M. Jescheck, Z. Phys. Chem. Neue Folge 97, 127 (1975)

  6. J. Baranski, Dr.-Ing. Thesis, University of Rostock, Rostock (2002)

  7. D. Buttig, E. Vogel, E. Bich, E. Hassel, Meas. Sci. Technol. 22, 1 (2011)

    Article  Google Scholar 

  8. T. Kugler, B. Jäger, M.H. Rausch, E. Bich, A.P. Fröba, Int. J. Thermophys. 34, 47 (2013)

    Article  ADS  Google Scholar 

  9. T. Kugler, B. Jäger, E. Bich, M.H. Rausch, A.P. Fröba, Int. J. Thermophys. (2015). doi:10.1007/s10765-015-1966-4

  10. T. Kugler, Dr.-Ing. Thesis, University of Erlangen-Nuremberg, Erlangen (2015)

  11. H. Becker, U. Grigull, Optik 35, 223 (1972)

    Google Scholar 

  12. H.J. Achtermann, J.G. Hong, G. Magnus, R.A. Aziz, M.J. Siaman, J. Chem. Phys. 98, 2308 (1993)

    Article  ADS  Google Scholar 

  13. A.D. Buckingham, C. Graham, Proc. R. Soc. Lond. A 336, 275 (1974)

    Article  ADS  Google Scholar 

  14. E. Bich, R. Hellmann, B. Jäger, Personal Communication to T. Kugler About Binary Diffusion Coefficients of Gases (University of Rostock, Rostock, 2010–2014)

  15. J.H. Dymond, K.N. Marsh, R.C. Wilhoit, K.C. Wong, Group IV: Physical Chemistry (Springer Publishing Company, Berlin, 2002)

    Google Scholar 

  16. J.H. Dymond, E.B. Smith, The Virial Coefficients of Pure Gases and Mixtures (Oxford University Press, Oxford, 1980)

    Google Scholar 

  17. J.H. Smith, E.B. Dymond, The Virial Coefficients of Gases (Clarendon Press, Oxford, 1969)

    Google Scholar 

  18. J. Crank, The Mathematics of Diffusion (Clarendon Press, Oxford, 1956)

    MATH  Google Scholar 

  19. T.R. Marrero, E.A. Mason, J. Phys. Chem. Ref. Data 1, 3 (1972)

    Article  ADS  Google Scholar 

  20. G.R. Staker, P.J. Dunlop, Chem. Phys. Lett. 42, 419 (1976)

    Article  ADS  Google Scholar 

  21. P.S. Arora, H.L. Robjohns, P.J. Dunlop, Physica A 95, 561 (1979)

    Article  ADS  Google Scholar 

  22. E.U. Schlünder, Einführung in die Stoffübertragung, 2nd edn. (Vieweg, Braunschweig, 1996)

    Google Scholar 

  23. A. Yıldız, M.A. Ersöz, Energy 60, 407 (2013)

    Article  Google Scholar 

  24. I.B. Srivastava, Ind. J. Phys. 36, 193 (1962)

    Google Scholar 

  25. B.A. Ivakin, P.E. Suetin, Sov. Phys. Tech. Phys. 8, 748 (1964)

    Google Scholar 

  26. P.J. Dunlop, C.M. Bignell, Ber. Bunsen-Ges. Phys. Chem. 91, 817 (1987)

    Article  Google Scholar 

  27. J. Kestin, S.T. Ro, Ber. Bunsen-Ges. Phys. Chem. 86, 948 (1982)

    Article  Google Scholar 

  28. P.J. Dunlop, C.M. Bignell, J. Chem. Phys. 93, 2701 (1990)

    Article  ADS  Google Scholar 

  29. T.N. Bell, I.R. Shankland, P.J. Dunlop, Chem. Phys. Lett. 45, 445 (1977)

    Article  ADS  Google Scholar 

  30. S. Weissmann, J. Chem. Phys. 40, 3397 (1964)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) through funding of the Erlangen Graduate School in Advanced Optical Technologies (SAOT) as part of the German Initiative for Excellence and via the project “diffusion coefficient” (Grants FR 1709/10-1 and FR 1709/10-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Fröba.

Appendix: Binary Diffusion Coefficient Data

Appendix: Binary Diffusion Coefficient Data

Table 1 Molar density of the mixture and binary diffusion coefficient data for the different gas systems at a mole fraction of 0.5 and different thermodynamic states
Table 2 Molar density of the mixture and binary diffusion coefficient data at a mole fraction of 0.5 for different gas systems studied at 293.15 K and 2 bar

The \(D_{12}\) data discussed in context with the figures presented in Sect. 3 as a function of temperature and pressure are listed in Table 1. In Table 2, the results of the raw data processing for different systems investigated at 293.15 K and 2 bar in a previous study [9] are given. All \(D_{12}\) data are reported together with the estimated expanded uncertainties obtained according to the procedure described in Sect. 2.5. Furthermore, the corresponding values for \(\rho _{\mathrm{mix}}\) for the different gaseous systems in the particular thermodynamic states are given in the tables. \(\rho _{\mathrm{mix}}\) is assumed to be independent of the mole fraction for a given system and thermodynamic state. For the Ar–Ne system, experimentally determined \(\rho _{\mathrm{mix}}\) values vary due to real gas effects by less than 0.1 % during the diffusion process. \(\rho _{\mathrm{mix}}\) can also be calculated by

$$\begin{aligned} \frac{p}{RT}=\rho _{\mathrm {mix}} +\rho _{\mathrm {mix}}^{2} B_{\mathrm {mix}} +\rho _{\mathrm {mix}}^{3} C_{\mathrm {mix}} . \end{aligned}$$
(11)

Here, \(B_{\mathrm{mix}}\) and \(C_{\mathrm{mix}}\) denote the second and the third pressure virial coefficient of the mixture and were taken from the literature [1, 10, 1417]. The \(\rho _{\mathrm{mix}}\) data calculated from Eq. 11 for \(x=0.5\) deviate by less than 0.1 % from the experimental data and were used to calculate the \(D_{12} \rho _{\mathrm{mix}}\) data given in the figures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kugler, T., Rausch, M.H. & Fröba, A.P. Binary Diffusion Coefficient Data of Various Gas Systems Determined Using a Loschmidt Cell and Holographic Interferometry. Int J Thermophys 36, 3169–3185 (2015). https://doi.org/10.1007/s10765-015-1981-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-015-1981-5

Keywords

Navigation