Structural, Elastic, Electronic Optical and Thermodynamic Properties of \(\hbox {ZnAl}_{2}\hbox {S}_{4}\)
Abstract
The structural, elastic, electronic, optical, and thermodynamic properties of the \(\hbox {ZnAl}_{2}\hbox {S}_{4 }\) compound are calculated in the frame work of the density functional theory where the calculated structural parameters are found to be in good agreement with the experimental data and other theoretical calculations. The calculations show that the material is elastically stable and isotropic. Furthermore, the calculated band gap is observed to be wide and direct and is comparable with earlier experimental data as well as with other theoretical calculations; hence, it is an optically active material for optoelectronic applications. In addition, the compound is found to have mixed ionic and covalent bonding nature. The optical nature of the compound is described in terms of the complex dielectric function, complex refractive index, reflectivity, and energy loss function. On the other hand, variation of the unit cell volume, bulk modulus, heat capacity, and Debye temperature are described as a function of temperature at different pressures for the \(\hbox {ZnAl}_{2}\hbox {S}_{4}\) compound.
Keywords
FP-LAPW+lo mBJ Optical properties Thermodynamic propertiesReferences
- 1.V.V. Ursaki, I.I. Burlakov, I.M. Tiginyanu, Y.S. Raptis, E. Anastassakis, I. Aksenov, K. Sato, Jpn. J. Appl. Phys. 37, 135 (1998)CrossRefADSGoogle Scholar
- 2.B.R. Jovanić, I. Broussell, B. Panić, B. Radenković, M. Despotović, Mater. Res. Bull. 45, 186 (2010)CrossRefGoogle Scholar
- 3.S.I. Klokishner, O.V. Kulikova, L.L. Kulyuk, A.A. Nateprov, A.N. Nateprov, S.M. Ostrovsky, A.V. Palii, O.S. Reu, A.V. Siminel, Opt. Mater. 31, 284 (2008)CrossRefADSGoogle Scholar
- 4.M.G. Brik, J. Phys. Chem. Solids 71, 1435 (2010)CrossRefADSGoogle Scholar
- 5.A. Bouhemadou, F. Zerarga, A. Almuhayya, S. Bin-Omran, Mater. Res. Bull. 46, 2252 (2011)CrossRefGoogle Scholar
- 6.D. Koller, F. Tran, P. Blaha, Phys. Rev. B 83, 195134 (2011)CrossRefADSGoogle Scholar
- 7.V.I. Anisimov, J. Zaanen, O.K. Andersen, Phys. Rev. B 44, 943 (1991)CrossRefADSGoogle Scholar
- 8.F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)CrossRefADSGoogle Scholar
- 9.D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)CrossRefADSGoogle Scholar
- 10.J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997)CrossRefADSGoogle Scholar
- 11.E. Engel, Phys. Rev. B 80, 16120 (2009)Google Scholar
- 12.D.A. Becke, R.E. Johnson, J. Chem. Phys. 124, 221101 (2006)CrossRefADSGoogle Scholar
- 13.K.M. Wong, S.M. Alay-e-Abbas, A. Shaukat, Y. Fang, Y. Lei, J. Appl. Phys. 113, 014304 (2013)CrossRefADSGoogle Scholar
- 14.K.M. Wong, S.M. Alay-e-Abbas, Y. Fang, A. Shaukat, Y. Lei, J. Appl. Phys. 114, 034901 (2013)CrossRefADSGoogle Scholar
- 15.P. Blaha, K. Schwarz, G.H. Madsen, D. Kvasnicka, J. Luitz, FP-L/APW+lo Program for Calculating Crystal Properties (K. Schwarz, Techn WIEN2K, Austria, 2001)Google Scholar
- 16.F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944)MathSciNetCrossRefADSMATHGoogle Scholar
- 17.F. Semari, T. Ouahrani, H. Khachai, R. Khenata, M. Rabah, A. Bouhemadou, G. Murtaza, B. Amin, D. Rached, Int. J. Mod. Phys. B 27, 1350082 (2013)CrossRefADSGoogle Scholar
- 18.A. Bouhemadoua, R. Khenata, M. Kharoubi, T. Seddik, A.H. Reshak, Y. Al-Douri, Comput. Mater. Sci. 38, 263 (2006)CrossRefGoogle Scholar
- 19.S.F. Pugh, Philos. Mag. Ser. 7(45), 823 (1954)CrossRefGoogle Scholar
- 20.H.J. Berthold, K. Koehler, R. Wartchow, Zeitschrift fur Anorganische und Allgemaine Chemie 496, 7 (1983)CrossRefGoogle Scholar
- 21.S. Güner, F. Yildiz, B. Rameev, B. Aktaş, J. Phys. Condens. Matter 17, 3943 (2005)CrossRefADSGoogle Scholar
- 22.C. Ambrosch-Draxl, J.O. Sofo, Comput. Phys. Commun. 175, 1 (2006)CrossRefADSGoogle Scholar
- 23.A. Manzar, G. Murtaza, R. Khenata, S. Muhammad, Hayatullah, Chin. Phys. Lett. 30, 047401 (2013)CrossRefADSGoogle Scholar