International Journal of Thermophysics

, Volume 36, Issue 10–11, pp 2940–2952 | Cite as

Structural, Elastic, Electronic Optical and Thermodynamic Properties of \(\hbox {ZnAl}_{2}\hbox {S}_{4}\)

  • A. Haddou
  • G. Murtaza
  • H. Khachai
  • R. Khenata
  • S. Bin Omran
  • Naeem Ullah
  • Dinesh Varshney
  • A. Bouhemadou
Article

Abstract

The structural, elastic, electronic, optical, and thermodynamic properties of the \(\hbox {ZnAl}_{2}\hbox {S}_{4 }\) compound are calculated in the frame work of the density functional theory where the calculated structural parameters are found to be in good agreement with the experimental data and other theoretical calculations. The calculations show that the material is elastically stable and isotropic. Furthermore, the calculated band gap is observed to be wide and direct and is comparable with earlier experimental data as well as with other theoretical calculations; hence, it is an optically active material for optoelectronic applications. In addition, the compound is found to have mixed ionic and covalent bonding nature. The optical nature of the compound is described in terms of the complex dielectric function, complex refractive index, reflectivity, and energy loss function. On the other hand, variation of the unit cell volume, bulk modulus, heat capacity, and Debye temperature are described as a function of temperature at different pressures for the \(\hbox {ZnAl}_{2}\hbox {S}_{4}\) compound.

Keywords

FP-LAPW+lo mBJ Optical properties Thermodynamic properties 

References

  1. 1.
    V.V. Ursaki, I.I. Burlakov, I.M. Tiginyanu, Y.S. Raptis, E. Anastassakis, I. Aksenov, K. Sato, Jpn. J. Appl. Phys. 37, 135 (1998)CrossRefADSGoogle Scholar
  2. 2.
    B.R. Jovanić, I. Broussell, B. Panić, B. Radenković, M. Despotović, Mater. Res. Bull. 45, 186 (2010)CrossRefGoogle Scholar
  3. 3.
    S.I. Klokishner, O.V. Kulikova, L.L. Kulyuk, A.A. Nateprov, A.N. Nateprov, S.M. Ostrovsky, A.V. Palii, O.S. Reu, A.V. Siminel, Opt. Mater. 31, 284 (2008)CrossRefADSGoogle Scholar
  4. 4.
    M.G. Brik, J. Phys. Chem. Solids 71, 1435 (2010)CrossRefADSGoogle Scholar
  5. 5.
    A. Bouhemadou, F. Zerarga, A. Almuhayya, S. Bin-Omran, Mater. Res. Bull. 46, 2252 (2011)CrossRefGoogle Scholar
  6. 6.
    D. Koller, F. Tran, P. Blaha, Phys. Rev. B 83, 195134 (2011)CrossRefADSGoogle Scholar
  7. 7.
    V.I. Anisimov, J. Zaanen, O.K. Andersen, Phys. Rev. B 44, 943 (1991)CrossRefADSGoogle Scholar
  8. 8.
    F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)CrossRefADSGoogle Scholar
  9. 9.
    D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)CrossRefADSGoogle Scholar
  10. 10.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997)CrossRefADSGoogle Scholar
  11. 11.
    E. Engel, Phys. Rev. B 80, 16120 (2009)Google Scholar
  12. 12.
    D.A. Becke, R.E. Johnson, J. Chem. Phys. 124, 221101 (2006)CrossRefADSGoogle Scholar
  13. 13.
    K.M. Wong, S.M. Alay-e-Abbas, A. Shaukat, Y. Fang, Y. Lei, J. Appl. Phys. 113, 014304 (2013)CrossRefADSGoogle Scholar
  14. 14.
    K.M. Wong, S.M. Alay-e-Abbas, Y. Fang, A. Shaukat, Y. Lei, J. Appl. Phys. 114, 034901 (2013)CrossRefADSGoogle Scholar
  15. 15.
    P. Blaha, K. Schwarz, G.H. Madsen, D. Kvasnicka, J. Luitz, FP-L/APW+lo Program for Calculating Crystal Properties (K. Schwarz, Techn WIEN2K, Austria, 2001)Google Scholar
  16. 16.
    F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944)MathSciNetCrossRefADSMATHGoogle Scholar
  17. 17.
    F. Semari, T. Ouahrani, H. Khachai, R. Khenata, M. Rabah, A. Bouhemadou, G. Murtaza, B. Amin, D. Rached, Int. J. Mod. Phys. B 27, 1350082 (2013)CrossRefADSGoogle Scholar
  18. 18.
    A. Bouhemadoua, R. Khenata, M. Kharoubi, T. Seddik, A.H. Reshak, Y. Al-Douri, Comput. Mater. Sci. 38, 263 (2006)CrossRefGoogle Scholar
  19. 19.
    S.F. Pugh, Philos. Mag. Ser. 7(45), 823 (1954)CrossRefGoogle Scholar
  20. 20.
    H.J. Berthold, K. Koehler, R. Wartchow, Zeitschrift fur Anorganische und Allgemaine Chemie 496, 7 (1983)CrossRefGoogle Scholar
  21. 21.
    S. Güner, F. Yildiz, B. Rameev, B. Aktaş, J. Phys. Condens. Matter 17, 3943 (2005)CrossRefADSGoogle Scholar
  22. 22.
    C. Ambrosch-Draxl, J.O. Sofo, Comput. Phys. Commun. 175, 1 (2006)CrossRefADSGoogle Scholar
  23. 23.
    A. Manzar, G. Murtaza, R. Khenata, S. Muhammad, Hayatullah, Chin. Phys. Lett. 30, 047401 (2013)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • A. Haddou
    • 1
  • G. Murtaza
    • 2
  • H. Khachai
    • 1
  • R. Khenata
    • 3
  • S. Bin Omran
    • 4
  • Naeem Ullah
    • 5
  • Dinesh Varshney
    • 6
  • A. Bouhemadou
    • 7
  1. 1.Laboratoire d’Étude des Matériaux & Instrumentations Optiques, Département Matériaux et Développement Durable, Faculté des Sciences ExactesUniversité Djillali LiabèsSidi Bel AbbèsAlgeria
  2. 2.Materials Modeling Laboratory, Department of PhysicsIslamia College PeshawarPeshawarPakistan
  3. 3.Laboratoire de Physique Quantique et de Modélisation MathématiqueUniversité de MascaraMascaraAlgeria
  4. 4.Department of Physics and Astronomy, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  5. 5.Department of Physics G. D. C. Darra Adam KhelF. R. KohatKohatPakistan
  6. 6.Materials Science Laboratory, School of Physics, Vigyan BhavanDevi Ahilya UniversityIndoreIndia
  7. 7.Laboratory for Developing New Materials and Their Characterization, Department of Physics, Faculty of ScienceUniversity of SetifSetifAlgeria

Personalised recommendations