Skip to main content
Log in

Effect of Annealing on Drift in Type S Thermocouples Below \(900\, ^{\circ }\hbox {C}\)

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Type R and Type S platinum/platinum–rhodium thermocouples are amongst the most widely used high-temperature thermocouples, both for process measurement and as reference thermocouples. To achieve the lowest practical uncertainties, below \(1\, ^{\circ }\hbox {C}\), the thermocouples must be in a well-defined thermoelectric state. There are two annealing procedures in common use that leave the thermocouples in different states, leading to a potential ambiguity and uncertainty. This paper reports on experiments with Type S thermocouples clearly exposing the different drift characteristics for the two different annealed states. Thermocouples used above \(800\, ^{\circ }\hbox {C}\) show the least drift when annealed at \(1100\, ^{\circ }\hbox {C}\) and then passively quenched to room temperature. If used at lower temperatures, they exhibit drift, at temperatures as low as \(170\, ^{\circ }\hbox {C}\), with the drift peaking at \(0.3\, ^{\circ }\hbox {C}\) to \(0.4\, ^{\circ }\hbox {C}\) around \(300\, ^{\circ }\hbox {C}\) to \(600 \, ^{\circ }\hbox {C}\). Thermocouples used below \(800\, ^{\circ }\hbox {C}\) are best annealed at \(1100\, ^{\circ }\hbox {C}\), and then again at \(450\, ^{\circ }\hbox {C}\). In this state, they exhibit practically zero drift for temperatures up to about \(600 \, ^{\circ }\hbox {C}\). Advice on calibration procedures to minimise the effects of drift is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E.H. McLaren, E.G. Murdock, The Properties of Pt/PtRh Thermocouples for Thermometry in the Range 0–1100\(\, ^{\circ }{C}\), Part 3, 17409th edn. (National Research Council Canada, 1983)

  2. E.H. McLaren, E.G. Murdock, The Properties of Pt/PtRh Thermocouples for Thermometry in the Range 0–1100\(\, ^{\circ }C\), Part 2, 17408th edn. (National Research Council Canada, 1979)

  3. E.H. McLaren, E.G. Murdock, The Properties of Pt/PtRh Thermocouples for Thermometry in the Range 0–1100\(\, ^{\circ }\text{ C }\), Part 1, 17407th edn. (National Research Council Canada, 1979)

  4. R.E. Bentley, Measurement 23, 35–46 (1998)

    Article  Google Scholar 

  5. R.E. Bentley, T.P. Jones, High Temp. High Press. 12, 33–45 (1980)

    MATH  Google Scholar 

  6. R.E. Bentley, Theory and Practice of Thermoelectric Thermometry, 1st edn. (Springer, Berlin, 1998)

    Google Scholar 

  7. F. Jahan, M. Ballico, Int. J. Thermophys. 31, 1544–1553 (2010)

    Article  ADS  MATH  Google Scholar 

  8. E.H. McLaren, E.G. Murdock, in Temperature, Its Measurement and Control in Science and Industry (Part 2), vol. 5, ed. by J.F. Schooley (Instrument Society of America, Pittsburgh, 1982), pp. 959–975

  9. E.H. McLaren, E.G. Murdock, C.G. Kirby, Rev. Sci. Instrum. 43, 827–828 (1972)

    Article  ADS  Google Scholar 

  10. F. Edler, P. Ederer, qq, in Temperature, Its Measurement and Control in Science and Industry. Part 1, ed. by C.W. Meyer (AIP, Melville, NY, 2013), pp. 532–537

  11. E.H. McLaren, E.G. Murdock, in Temperature, Its Measurement and Control in Science and Industry. Part 3, vol. 4, ed. by H.H. Plumb, H.H. Plumb (Instrument Society of America, Pittsburgh, 1972), pp. 1543–1560

  12. E.S. Webster, D.R. White, H. Edgar, Int. J. Thermophys. 36, 444–466 (2014)

    Article  ADS  Google Scholar 

  13. R.E. Bentley, J. Phys. E 20, 1368–1373 (1987)

    Article  ADS  Google Scholar 

  14. D.R. White, R.S. Mason, Int. J. Thermophys. 31, 1654–1662 (2010)

    Article  ADS  Google Scholar 

  15. E.S. Webster, D.R. White, Metrologia 52, 130–144 (2015)

    Article  ADS  Google Scholar 

  16. G.W. Burns, M.G. Scroger, G.F. Strouse, M.C. Croarkin, W.F. Guthrie, Temperature-Electromotive Force Reference Functions and Tables for the Letter-Designated Thermocouple Types Based on the ITS-90 (NIST, Washington, DC, 1993)

    Book  Google Scholar 

  17. J.C. Chaston, Platin. Met. Rev. 19, 135–140 (1975)

    Google Scholar 

  18. T. Li, E.A. Marquis, P.A.J. Bagot, S.C. Tsang, G.D.W. Smith, Catal. Today 175, 552–557 (2011)

    Article  Google Scholar 

  19. W.S. Ohm, K.D. Hill, Int. J. Thermophys. 31, 1402–1416 (2010)

    Article  ADS  MATH  Google Scholar 

  20. C.A. Krier, R.I. Jaffee, J. Less Common Met. 5, 411–431 (1963)

    Article  Google Scholar 

  21. J.C. Chaston, Platin. Met. Rev. 10, 91–93 (1966)

    Google Scholar 

  22. H. Jehn, J. Less Common Met. 100, 321–339 (1984)

    Article  Google Scholar 

  23. R.J. Berry, Metrologia 16, 117–126 (1980)

    Article  ADS  Google Scholar 

  24. R.E. Bentley, Meas. Sci. Technol. 11, 538–546 (2000)

    Article  ADS  Google Scholar 

  25. R.E. Bentley, Meas. Sci. Technol. 12, 627–634 (2001)

    Article  ADS  Google Scholar 

  26. A. Seeger, G. Schottky, D. Schumacher, Phys. Status Solidi 11, 363–370 (1965)

    Article  Google Scholar 

  27. D. Schumacher, A. Seeger, O. Harlin, Phys. Status Solidi 25, 359–371 (1968)

    Article  MATH  Google Scholar 

  28. T.G. Kollie, J.L. Horton, K.R. Carr, M.B. Herskovitz, C.A. Mossman, Rev. Sci. Instrum. 46, 1447–1461 (1975)

    Article  ADS  Google Scholar 

  29. Z.W. Lu, S.H. Wei, A. Zunger, Phys. Rev. Lett. 66, 1753 (1991)

    Article  ADS  Google Scholar 

  30. K. Yuge, A. Seko, A. Kuwabara, F. Oba, I. Tanaka, Phys. Rev. B 74, 174202 (2006)

    Article  ADS  Google Scholar 

  31. A. Marucco, B. Nath, J. Mater. Sci. 23, 2107–2114 (1988)

    Article  ADS  Google Scholar 

  32. E. Lang, V. Lupinc, A. Marucco, Mater. Sci. Eng. 114, 147–157 (1989)

    Article  Google Scholar 

  33. A. Marucco, Mater. Sci. Eng. 189, 267–276 (1994)

    Article  Google Scholar 

  34. R. Norhein, N.J. Grant, J. Inst. Met. 82, 440–444 (1953)

    MATH  Google Scholar 

  35. W.E. Clayton, C.R. Brooks, Metall. Mater. Trans. A 2, 531–535 (1971)

    ADS  Google Scholar 

  36. F. Jahan, M. Ballico, Int. J. Thermophys. 28, 1832–1842 (2007)

    Article  ADS  Google Scholar 

  37. R.E. Bentley, Metrologia 35, 41–47 (1998)

    Article  ADS  Google Scholar 

  38. J.P. Evans, S.D. Wood, Metrologia 7, 108–130 (1971)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author wishes to acknowledge the work of Hamish Edgar (MSL) in the construction of the furnaces used in this study and the insightful discussions with Rod White (MSL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Webster.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Webster, E.S. Effect of Annealing on Drift in Type S Thermocouples Below \(900\, ^{\circ }\hbox {C}\) . Int J Thermophys 36, 1909–1924 (2015). https://doi.org/10.1007/s10765-015-1910-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-015-1910-7

Keywords

Navigation