International Journal of Thermophysics

, Volume 36, Issue 7, pp 1640–1653 | Cite as

Ab Initio Study of the Structural, Electronic, and Thermal Properties of \(\hbox {BaS}_{{1-{{x}}}}\hbox {Te}_{{x}}\) Alloy

  • I. Benkaddour
  • H. Khachai
  • F. Chiker
  • N. Benosman
  • Y. Benkaddour
  • G. Murtaza
  • S. Bin Omran
  • R. Khenata
Article

Abstract

The results of a first-principle study of the structural, electronic, and thermal properties of a \(\hbox {BaS}_{1-{x}}\hbox {Te}_{{x}}\) alloy, using the full-potential linear muffin-tin-orbital (FP-LMTO) method in the framework of density functional theory, within both the local density approximation and the generalized gradient approximation are presented. The composition effect on lattice constants, bulk moduli, band gaps, and effective masses is analyzed. The quasi-harmonic Debye model, using a set of total energy versus volume calculations obtained with the FP-LMTO method, is applied to study the thermal and vibrational effects. The temperature effect on the lattice parameters, thermal expansions, heat capacities, and Debye temperatures is determined from the non-equilibrium Gibbs functions. The microscopic origins of the bowing parameter were explained using the approach of Zunger and coworkers.

Keywords

Bowing Effective mass FP-LMTO Thermal properties 

References

  1. 1.
    K.M. Wong, S.M. Alay-e-Abbas, A. Shaukat, Y. Fang, Y. Lei, J. Appl. Phys. 113, 014304 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    K.M. Wong, S.M. Alay-e-Abbas, Y. Fang, A. Shaukat, Y. Lei, J. Appl. Phys. 114, 034901 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    T.A. Grzybowski, A.L. Ruoff, Phys. Rev. B 27, 6502 (1983)ADSCrossRefGoogle Scholar
  4. 4.
    T.A. Grzybowski, A.L. Ruoff, Phys. Rev. Lett. 53, 489 (1984)ADSCrossRefGoogle Scholar
  5. 5.
    S.T. Weir, Y.K. Vohra, A.L. Ruoff, Phys. Rev. B 33, 4221 (1986)ADSCrossRefGoogle Scholar
  6. 6.
    S.T. Weir, Y.K. Vohra, A.L. Ruoff, Phys. Rev. B 35, 874 (1987)ADSCrossRefGoogle Scholar
  7. 7.
    A.L. Ruoff, T.A. Grzybowski, in Solid state physics under pressure, ed. by S. Minomura (Terra Scientific, Tokyo, 1985)Google Scholar
  8. 8.
    S. Yamaoka, O. Shimomuro, H. Nakasawa, O. Fukunaga, Solide State Commun. 33, 87 (1980)ADSCrossRefGoogle Scholar
  9. 9.
    K. Syassen, N.E. Christensen, H. Winzen, K. Fischer, J. Evers. Phys. Rev. B 35, 4052 (1987)ADSCrossRefGoogle Scholar
  10. 10.
    A. Jayaraman, B. Batlogg, R.G. Maines, H. Bach, Phys. Rev. B 26, 3347 (1982)ADSCrossRefGoogle Scholar
  11. 11.
    S.H. Wei, H. Krakauer, Phys. Rev. Lett. 55, 1200 (1985)ADSCrossRefGoogle Scholar
  12. 12.
    G. Kalpana, B. Palanivel, M. Rajagopalan, Phys. Rev. B 50, 12318 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    A.E. Carisson, J.W. Wilkins, Phys. Rev. B 29, 5836 (1984)ADSCrossRefGoogle Scholar
  14. 14.
    G.K. Straub, W.A. Harrison, Phys. Rev. B 39, 10325 (1989)ADSCrossRefGoogle Scholar
  15. 15.
    H. Akbarzadeh, M. Dadsetani, M. Mehrani, Comput. Mater. Sci. 17, 81 (2000)CrossRefGoogle Scholar
  16. 16.
    W.A. Harrison, Phys. Rev. B 34, 2787 (1986)ADSCrossRefGoogle Scholar
  17. 17.
    P.K. Jha, U.K. Sakalle, S.P. Sanyal, J. Phys. Chem. Solids 59, 1633 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    G.Q. Lin, H. Gong, P. Wu, Phys. Rev. B 71, 085203 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    A. Zunger, S.H. Wie, L.G. Ferreira, J.E. Bernard, Phys. Rev. Lett. 65, 353 (1990)ADSCrossRefGoogle Scholar
  20. 20.
    S. Savrasov, D. Savrasov, Phys. Rev. B 46, 12181 (1992)ADSCrossRefGoogle Scholar
  21. 21.
    W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    S.Y. Savrasov, Z. Kristallogr. 220, 555 (2005)Google Scholar
  23. 23.
    J.P. Perdew, Y. Wang, Phys. Rev. A 45, 13244 (1992)Google Scholar
  24. 24.
    J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    P. Blochl, O. Jepsen, O.K. Andersen, Phys. Rev. B 49, 16223 (1994)ADSCrossRefGoogle Scholar
  26. 26.
    M.A. Blanco, E. Francisco, V. Luana, Comput. Phys. Commun. 158, 57 (2004)ADSCrossRefMATHGoogle Scholar
  27. 27.
    F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944)MathSciNetADSCrossRefMATHGoogle Scholar
  28. 28.
    L. Vegard, J. Phys. 5, 393 (1921)ADSGoogle Scholar
  29. 29.
    B. Jobst, D. Hommel, U. Lunz, T. Gerharda, G. Landwehr, Appl. Phys. Lett. 69, 97 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    F. El Haj Hassan, H. Akdarzadeh, Mater. Sci. Eng. 121, 171 (2005)CrossRefGoogle Scholar
  31. 31.
    M. Ameri, D. Rached, Mr Rabah, R. Khenata, N. Benkhettou, B. Bouhafs, M. Maachou, Mater. Sci. Semicond. Process. 10, 6 (2007)CrossRefGoogle Scholar
  32. 32.
    P. Dufek, P. Blaha, K. Schwarz, Phys. Rev. B 50, 7279 (1994)ADSCrossRefGoogle Scholar
  33. 33.
    G.B. Bachelet, N.E. Christensen, Phys. Rev. B 31, 879 (1985)ADSCrossRefGoogle Scholar
  34. 34.
    G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    J.E. Bernard, A. Zunger, Phys. Rev. B 34, 5992 (1986)ADSCrossRefGoogle Scholar
  36. 36.
    A. Bouhemadou, R. Khenata, F. Zegrar, M. Sahnoun, H. Baltache, A.H. Reshak, Comput. Mater. Sci. 38, 263 (2006)CrossRefGoogle Scholar
  37. 37.
    R.J. Zolweg, Phys. Rev. 11, 113 (1958)ADSCrossRefGoogle Scholar
  38. 38.
    G.A. Saum, E.B. Hensley, Phys. Rev. 113, 1019 (1959)ADSCrossRefGoogle Scholar
  39. 39.
    R. Khenata, M. Sahnoun, H. Baltache, M. Rérat, D. Rached, M. Driz, B. Bouhafs, Physica B 371, 12 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    S. Drablia, H. Meradji, S. Ghemid, G. Nouet, F. El Haj Hassan, Comput. Mater. Sci. 46, 376 (2009)CrossRefGoogle Scholar
  41. 41.
    A.T. Petit, P.L. Dulong, Ann. Chim. Phys. 10, 395 (1819)Google Scholar
  42. 42.
    P. Debye, Ann. Phys. 39, 789 (1912)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • I. Benkaddour
    • 1
  • H. Khachai
    • 2
  • F. Chiker
    • 2
  • N. Benosman
    • 3
  • Y. Benkaddour
    • 2
  • G. Murtaza
    • 4
  • S. Bin Omran
    • 5
  • R. Khenata
    • 6
  1. 1.Physics DepartmentDjillali Liabes University of Sidi Bel-AbbesSidi Bel AbbésAlgeria
  2. 2.Laboratoire d’Étude des Matériaux & Instrumentations Optiques, Département Matériaux et Développement Durable, Faculté des Sciences ExactesUniversité Djillali Liabès de Sidi Bel AbbèsSidi Bel-AbbèsAlgeria
  3. 3.Laboratoire de Modélisation et Simulation en Sciences des Matériaux, Physics DepartmentDjillali Liabès University of Sidi Bel-AbbèsSidi Bel-AbbèsAlgeria
  4. 4.Materials Modeling Laboratory, Department of PhysicsIslamia College UniversityPeshawarPakistan
  5. 5.Department of Physics and Astronomy, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  6. 6.Laboratoire de Physique Quantique et de Modélisation Mathématique de la matière (LPQ3M)Université de MascaraMascaraAlgeria

Personalised recommendations