Ab Initio Study of the Structural, Electronic, and Thermal Properties of \(\hbox {BaS}_{{1-{{x}}}}\hbox {Te}_{{x}}\) Alloy
Abstract
The results of a first-principle study of the structural, electronic, and thermal properties of a \(\hbox {BaS}_{1-{x}}\hbox {Te}_{{x}}\) alloy, using the full-potential linear muffin-tin-orbital (FP-LMTO) method in the framework of density functional theory, within both the local density approximation and the generalized gradient approximation are presented. The composition effect on lattice constants, bulk moduli, band gaps, and effective masses is analyzed. The quasi-harmonic Debye model, using a set of total energy versus volume calculations obtained with the FP-LMTO method, is applied to study the thermal and vibrational effects. The temperature effect on the lattice parameters, thermal expansions, heat capacities, and Debye temperatures is determined from the non-equilibrium Gibbs functions. The microscopic origins of the bowing parameter were explained using the approach of Zunger and coworkers.
Keywords
Bowing Effective mass FP-LMTO Thermal propertiesReferences
- 1.K.M. Wong, S.M. Alay-e-Abbas, A. Shaukat, Y. Fang, Y. Lei, J. Appl. Phys. 113, 014304 (2013)ADSCrossRefGoogle Scholar
- 2.K.M. Wong, S.M. Alay-e-Abbas, Y. Fang, A. Shaukat, Y. Lei, J. Appl. Phys. 114, 034901 (2013)ADSCrossRefGoogle Scholar
- 3.T.A. Grzybowski, A.L. Ruoff, Phys. Rev. B 27, 6502 (1983)ADSCrossRefGoogle Scholar
- 4.T.A. Grzybowski, A.L. Ruoff, Phys. Rev. Lett. 53, 489 (1984)ADSCrossRefGoogle Scholar
- 5.S.T. Weir, Y.K. Vohra, A.L. Ruoff, Phys. Rev. B 33, 4221 (1986)ADSCrossRefGoogle Scholar
- 6.S.T. Weir, Y.K. Vohra, A.L. Ruoff, Phys. Rev. B 35, 874 (1987)ADSCrossRefGoogle Scholar
- 7.A.L. Ruoff, T.A. Grzybowski, in Solid state physics under pressure, ed. by S. Minomura (Terra Scientific, Tokyo, 1985)Google Scholar
- 8.S. Yamaoka, O. Shimomuro, H. Nakasawa, O. Fukunaga, Solide State Commun. 33, 87 (1980)ADSCrossRefGoogle Scholar
- 9.K. Syassen, N.E. Christensen, H. Winzen, K. Fischer, J. Evers. Phys. Rev. B 35, 4052 (1987)ADSCrossRefGoogle Scholar
- 10.A. Jayaraman, B. Batlogg, R.G. Maines, H. Bach, Phys. Rev. B 26, 3347 (1982)ADSCrossRefGoogle Scholar
- 11.S.H. Wei, H. Krakauer, Phys. Rev. Lett. 55, 1200 (1985)ADSCrossRefGoogle Scholar
- 12.G. Kalpana, B. Palanivel, M. Rajagopalan, Phys. Rev. B 50, 12318 (1994)ADSCrossRefGoogle Scholar
- 13.A.E. Carisson, J.W. Wilkins, Phys. Rev. B 29, 5836 (1984)ADSCrossRefGoogle Scholar
- 14.G.K. Straub, W.A. Harrison, Phys. Rev. B 39, 10325 (1989)ADSCrossRefGoogle Scholar
- 15.H. Akbarzadeh, M. Dadsetani, M. Mehrani, Comput. Mater. Sci. 17, 81 (2000)CrossRefGoogle Scholar
- 16.W.A. Harrison, Phys. Rev. B 34, 2787 (1986)ADSCrossRefGoogle Scholar
- 17.P.K. Jha, U.K. Sakalle, S.P. Sanyal, J. Phys. Chem. Solids 59, 1633 (1998)ADSCrossRefGoogle Scholar
- 18.G.Q. Lin, H. Gong, P. Wu, Phys. Rev. B 71, 085203 (2005)ADSCrossRefGoogle Scholar
- 19.A. Zunger, S.H. Wie, L.G. Ferreira, J.E. Bernard, Phys. Rev. Lett. 65, 353 (1990)ADSCrossRefGoogle Scholar
- 20.S. Savrasov, D. Savrasov, Phys. Rev. B 46, 12181 (1992)ADSCrossRefGoogle Scholar
- 21.W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965)MathSciNetADSCrossRefGoogle Scholar
- 22.S.Y. Savrasov, Z. Kristallogr. 220, 555 (2005)Google Scholar
- 23.J.P. Perdew, Y. Wang, Phys. Rev. A 45, 13244 (1992)Google Scholar
- 24.J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
- 25.P. Blochl, O. Jepsen, O.K. Andersen, Phys. Rev. B 49, 16223 (1994)ADSCrossRefGoogle Scholar
- 26.M.A. Blanco, E. Francisco, V. Luana, Comput. Phys. Commun. 158, 57 (2004)ADSCrossRefMATHGoogle Scholar
- 27.F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944)MathSciNetADSCrossRefMATHGoogle Scholar
- 28.L. Vegard, J. Phys. 5, 393 (1921)ADSGoogle Scholar
- 29.B. Jobst, D. Hommel, U. Lunz, T. Gerharda, G. Landwehr, Appl. Phys. Lett. 69, 97 (1996)ADSCrossRefGoogle Scholar
- 30.F. El Haj Hassan, H. Akdarzadeh, Mater. Sci. Eng. 121, 171 (2005)CrossRefGoogle Scholar
- 31.M. Ameri, D. Rached, Mr Rabah, R. Khenata, N. Benkhettou, B. Bouhafs, M. Maachou, Mater. Sci. Semicond. Process. 10, 6 (2007)CrossRefGoogle Scholar
- 32.P. Dufek, P. Blaha, K. Schwarz, Phys. Rev. B 50, 7279 (1994)ADSCrossRefGoogle Scholar
- 33.G.B. Bachelet, N.E. Christensen, Phys. Rev. B 31, 879 (1985)ADSCrossRefGoogle Scholar
- 34.G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002)ADSCrossRefGoogle Scholar
- 35.J.E. Bernard, A. Zunger, Phys. Rev. B 34, 5992 (1986)ADSCrossRefGoogle Scholar
- 36.A. Bouhemadou, R. Khenata, F. Zegrar, M. Sahnoun, H. Baltache, A.H. Reshak, Comput. Mater. Sci. 38, 263 (2006)CrossRefGoogle Scholar
- 37.R.J. Zolweg, Phys. Rev. 11, 113 (1958)ADSCrossRefGoogle Scholar
- 38.G.A. Saum, E.B. Hensley, Phys. Rev. 113, 1019 (1959)ADSCrossRefGoogle Scholar
- 39.R. Khenata, M. Sahnoun, H. Baltache, M. Rérat, D. Rached, M. Driz, B. Bouhafs, Physica B 371, 12 (2006)ADSCrossRefGoogle Scholar
- 40.S. Drablia, H. Meradji, S. Ghemid, G. Nouet, F. El Haj Hassan, Comput. Mater. Sci. 46, 376 (2009)CrossRefGoogle Scholar
- 41.A.T. Petit, P.L. Dulong, Ann. Chim. Phys. 10, 395 (1819)Google Scholar
- 42.P. Debye, Ann. Phys. 39, 789 (1912)CrossRefGoogle Scholar