Advertisement

International Journal of Thermophysics

, Volume 36, Issue 8, pp 1766–1774 | Cite as

A \({-}30\,^{\circ }\hbox {C}\) to \(80\,^{\circ }\hbox {C}\) Stirred-Liquid-Bath-Based Blackbody Source

  • J. WangEmail author
  • Z. Yuan
  • X. Hao
  • T. Wang
  • Y. Duan
Article

Abstract

At the national facility for blackbody source radiance temperature calibration of the National Institute of Metrology, China, a stirred liquid bath blackbody was developed for use as a radiance temperature reference source, which has a temperature range from \(-30\,^{\circ }\hbox {C}\) to \(80\,^{\circ }\hbox {C}\). This blackbody source consists of a stirred liquid bath, a blackbody cavity, a standard capsule platinum resistance thermometer, and a dry-air purging system. The cavity is cylindrical with \(31^{\circ }\,\hbox {V}\) grooves on the inner wall. The cavity is 80 mm in diameter, with a depth of 520 mm, and is immersed in a bath filled with a water–ethylene glycol mixture. The average normal emissivity of the cavity is calculated to be better than 0.9999 with V grooves and when painted with Nextel 811-21 coating. The temperature stability of the blackbody source is \(0.005\,^{\circ }\hbox {C}\) over a period of 20 min, and the temperature uniformity of the cavity bottom is \(0.02\,^{\circ }\hbox {C}\). The standard uncertainty of the radiance temperature of the stirred liquid bath blackbody source is estimated to be \(0.013\,^{\circ }\hbox {C}\).

Keywords

Blackbody source Radiation thermometry Stirred liquid bath 

References

  1. 1.
    P. Saunders, J. Fischer, M. Sadli, M. Battuello, C.W. Park, Z. Yuan, H. Yoon, W. Li, E. van der Ham, F. Sakuma, J. Ishii, M. Ballico, G. Machin, N. Fox, J. Hollandt, M. Matveyev, P. Bloembergen, S. Ugur, Int. J. Thermophys. 29, 1066 (2008)CrossRefADSGoogle Scholar
  2. 2.
    C.-W. Park, Y.S. Yoo, B.-H. Kim, S. Chun, S.-N. Park, Int. J. Thermophys. 32, 1622 (2011)CrossRefADSGoogle Scholar
  3. 3.
    J. Hollandt, R. Friedrich, B. Gutschwager, D.R. Taubert, J. Hartmann, High Temp. High Press. 35/36, 379 (2003/2004)Google Scholar
  4. 4.
    J.B. Fowler, J. Res. Natl. Inst. Stand. Technol. 100, 591 (1995)CrossRefGoogle Scholar
  5. 5.
    M. Ballico, in Proceedings of TEMPMEKO 2004, \(9^{th}\) International Symposium on Temperature and Thermal Measurements, in Industry and Science, ed. by D. Zvizdić, L.G. Bermanec, T. Veliki, T. Stašić (FSB/LPM, Zagreb, 2004), pp. 841–846Google Scholar
  6. 6.
    H.-Y. Ko, B.-J. Wen, S.-F. Tsa, G.-W. Li, Int. J. Thermophys. 30, 98 (2009)Google Scholar
  7. 7.
    B. Chu, G. Machin, Meas. Sci. Technol. 10, 1 (1999)CrossRefADSGoogle Scholar
  8. 8.
    J. Lohrengel, PTB-Mitteilungen 106, 4 (1996)Google Scholar
  9. 9.
    J. Wang, Z. Yuan, Y. Duan, in Proceedings of Ninth International Temperature Symposium (Los Angeles), Temperature: Its Measurement and Control, in Science and Industry, vol. 8, ed. by C.W. Meyer, A.I.P. Conference Proceedings 1552 (AIP, Melville, NY, 2013), pp. 757–761Google Scholar
  10. 10.
    A. Ono, J. Opt. Soc. Am. 70, 547 (1980)CrossRefADSGoogle Scholar
  11. 11.
    V.I. Sapritsky, A.V. Prokhorov, Metrologia 29, 9 (1992)CrossRefADSGoogle Scholar
  12. 12.
    Z. Yuan, in Proceedings of Ninth International Temperature Symposium (Los Angeles), Temperature: Its Measurement and Control, in Science and Industry, vol. 8, ed. by C.W. Meyer, A.I.P. Conference Proceedings 1552 (AIP, Melville, NY, 2013), pp. 631–636Google Scholar
  13. 13.
    “STEEP 3 Version 1.3” User’s Guide, Virial. IncGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Key Laboratory of Thermal Science and Power Engineering of Ministry of EducationTsinghua UniversityBeijingChina
  2. 2.National Institute of Metrology (NIM)BeijingChina

Personalised recommendations