Skip to main content
Log in

Photoacoustic Signal Formation in Heterogeneous Multilayer Systems with Piezoelectric Detection

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A new efficient model describing photoacoustic (PA) signal formation with piezoelectric detection is reported. Multilayer sandwich-like systems: heterogeneous studied structure—buffer layer—piezoelectric transducers are considered. In these systems, the buffer layer is used for spatial redistribution of thermoelastic force moments generated in the investigated structure. Thus, mechanical properties of this layer play a crucial role to ensure perfect control of the detected voltage formed on a piezoelectric transducer by contribution of different regions of the studied structure. In particular, formation of the voltage signal strongly depends on the point at which the thermoelastic source is applied. Therefore, use of relatively simple linear Green’s functions introduced in frames of the Kirchhoff–Love theory is chosen as an efficient approach for the PA signal description. Moreover, excellent agreement between the theoretical model and measured results obtained on a heterogeneous “porous silicon-bulk Si substrate” structure is stated. Furthermore, resolving of the inverse problem with fitting of the experimental curves by the developed model allows reliable evaluation of the thermal conductivity of the nanostructured porous silicon layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.I. Tytarenko, D.A. Andrusenko, A.G. Kuzmich, I.V. Gavril’chenko, V.A. Skryshevskii, M.V. Isaiev, R.M. Burbelo, Tech. Phys. Lett. 40, 188 (2014). doi:10.1134/S1063785014030146

    Article  ADS  Google Scholar 

  2. J.F. Zuccon, A. Mandelis, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35, 5 (1988). doi:10.1109/58.4142

    Article  Google Scholar 

  3. W. Jackson, N.M. Amer, J. Appl. Phys. 51, 3343 (1980). doi:10.1063/1.328045

    Article  ADS  Google Scholar 

  4. M. Malinski, J. Zakrzewski, K. Strzalkowski, Int. J. Thermophys. 28, 299 (2007). doi:10.1007/s10765-006-0126-2

    Article  ADS  Google Scholar 

  5. M. Malinski, J. Zakrzewski, K. Strzalkowski, J. Phys. Conf. Ser. 214, 012069 (2010). doi:10.1088/1742-6596/214/1/012069

    Article  ADS  Google Scholar 

  6. K. Strzalkowski, J. Zakrzewski, M. Malinski, Int. J. Thermophys. 34, 691 (2013). doi:10.1007/s10765-012-1382-y

    Article  ADS  Google Scholar 

  7. I.V. Blonskij, V.A. Tkhoryk, M.L. Shendeleva, J. Appl. Phys. 79, 3512 (1996). doi:10.1063/1.361401

    Article  ADS  Google Scholar 

  8. C. Gao, Y. Gao, Q. Sun, Y. Zhou, Z. Wang, Chin. J. Lasers 36, 426 (2009)

    Article  Google Scholar 

  9. L. Sun, S. Zhang, Y. Zhao, Z. Li, L. Cheng, Rev. Sci. Instrum. 74, 834 (2003). doi:10.1063/1.1520310

    Article  ADS  Google Scholar 

  10. Y.-F. Bi, Y.-F. Wang, C.-M. Gao, W. Li, B.-X. Zhao, Yadian Yu Shengguang/Piezoelectrics and Acoustooptics 30(5), 601 (2008)

    Google Scholar 

  11. C. Gao, S. Zhang, Y. Chen, X. Shui, Y. Yang, Chin. Sci. Bull. 49, 2115 (2004). doi:10.1007/BF03185774

    Article  Google Scholar 

  12. M.L. Shendeleva, Proc. SPIE 3359, 484 (1998). doi:10.1117/12.306266

    Article  ADS  Google Scholar 

  13. Q. Sun, C. Gao, B. Zhao, H. Rao, Proc. SPIE 7276, 72761N-1 (2009). doi:10.1117/12.823910

    Google Scholar 

  14. J. Zakrzewski, M. Malinski, K. Strzalkowski, D. Madaj, F. Firszt, S. Legowski, H. Meczynska, Int. J. Thermophys. 33, 733 (2012). doi:10.1007/s10765-012-1199-8

    Article  ADS  Google Scholar 

  15. S. Alekseev, D. Andrusenko, R. Burbelo, M. Isaiev, A. Kuzmich, J. Phys. Conf. Ser. 278, 012003 (2011). doi:10.1088/1742-6596/278/1/012003

    Article  ADS  Google Scholar 

  16. D.A. Andrusenko, I.Ya. Kucherov, Tech. Phys. 43, 67 (1998). doi:10.1134/1.1258938

  17. D.A. Andrusenko, I.Ya. Kucherov, Tech. Phys. 44, 1397 (1999). doi:10.1134/1.1259558

  18. Q. Sun, C. Gao, B. Zhao, Y. Bi, Int. J. Thermophys. 31, 1157 (2010). doi:10.1007/s10765-010-0769-x

    Article  ADS  Google Scholar 

  19. L. Yan, Ch. Gao, B. Zhao, X. Ma, N. Zhuang, H. Duan, Int. J. Thermophys. 33, 2001 (2012). doi:10.1007/s10765-012-1253-6

  20. Q.-M. Sun, C.-M. Gao, B.-X. Zhao, H.-B. Rao, Chin. Phys. B 19, 118103 (2010). doi:10.1088/1674-1056/19/11/118103

    Article  ADS  Google Scholar 

  21. B. Zhao, Y. Wang, C. Gao, T. Liu, Q. Sun, Int. J. Thermophys. 34, 1513 (2012). doi:10.1007/s10765-012-1327-5

    Article  ADS  Google Scholar 

  22. J. N. Reddy, Theory and Analysis of Elastic Plates and Shells, 2nd edn., Series in Systems and Control (CRC Press, Boca Raton, FL, 2006), p. 568

  23. S.P. Timoshenko, J.N. Goodier, Theory of Elasticity, 3rd edn. (McGraw-Hill, New York, 1987)

    Google Scholar 

  24. A. Rosencwaig, A. Gersho, Science 190, 556 (1975). doi:10.1126/science.190.4214.556

    Article  ADS  Google Scholar 

  25. D. Andrusenko, M. Isaiev, A. Kuzmich, V. Lysenko, R. Burbelo, Nanoscale Res. Lett. 7, 411 (2012). doi:10.1186/1556-276X-7-411

    Article  ADS  Google Scholar 

  26. N.C. Fernelius, J. Appl. Phys. 51, 650 (1980). doi:10.1063/1.327320

    Article  ADS  Google Scholar 

  27. Piezoelectric Materials (PI Ceramic), http://piceramic.com/products/piezoelectric-materials.html. Accessed 03 April 2014

  28. R. Burbelo, D. Andrusenko, M. Isaiev, A. Kuzmich, Arch. Metall. Mater. 56, 1157 (2011). doi:10.2478/v10172-011-0129-2

    Google Scholar 

  29. S. Perichon, V. Lysenko, Ph. Roussel, B. Remaki, B. Champagnon, D. Barbier, P. Pinard, Sens. Actuator 10, 7 (2000). doi:10.1016/S0924-4247(00)00327-7

  30. G. Gesele, J. Linsmeier, V. Drach, J. Fricke, R. Arens-Fischer, J. Phys. D 30, 2911 (1997). doi:10.1088/0022-3727/30/21/001

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mykola Isaiev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaiev, M., Andrusenko, D., Tytarenko, A. et al. Photoacoustic Signal Formation in Heterogeneous Multilayer Systems with Piezoelectric Detection. Int J Thermophys 35, 2341–2351 (2014). https://doi.org/10.1007/s10765-014-1652-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-014-1652-y

Keywords

Navigation