Skip to main content

Cavity-Enhanced Absorption Spectroscopy and Photoacoustic Spectroscopy for Human Breath Analysis

Abstract

This paper describes two different optoelectronic detection techniques: cavity-enhanced absorption spectroscopy and photoacoustic spectroscopy. These techniques are designed to perform a sensitive analysis of trace gas species in exhaled human breath for medical applications. With such systems, the detection of pathogenic changes at the molecular level can be achieved. The presence of certain gases (biomarkers), at increased concentration levels, indicates numerous human diseases. Diagnosis of a disease in its early stage would significantly increase chances for effective therapy. Non-invasive, real-time measurements, and high sensitivity and selectivity, capable of minimum discomfort for patients, are the main advantages of human breath analysis. At present, monitoring of volatile biomarkers in breath is commonly useful for diagnostic screening, treatment for specific conditions, therapy monitoring, control of exogenous gases (such as bacterial and poisonous emissions), as well as for analysis of metabolic gases.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. L. Pauling, A.B. Robinson, R. Teranishi, P. Cary, Proc. Natl. Acad. Sci. USA 68, 2374 (1971)

    ADS  Article  Google Scholar 

  2. H. O’Neill, S.M. Gordon, M. O’Neill, R.D. Gibbons, J.P. Szidon, Clin. Chem. 34, 1613 (1988)

    Google Scholar 

  3. C. Wang, P. Sahay, Sensors 9, 8230 (2009). doi:10.3390/s91008230

    Article  Google Scholar 

  4. J. Wojtas, Z. Bielecki, T. Stacewicz, J. Mikolajczyk, M. Nowakowski, Opto Electron. Rev. 201, 77 (2012)

    Google Scholar 

  5. A. Ulanowska, T. Ligor, M. Michel, B. Buszewski, Ecol. Chem. Eng. S 17, 9 (2010)

    Google Scholar 

  6. B. Buszewski, D. Grzywinski, T. Ligor, T. Stacewicz, Z. Bielecki, J. Wojtas, Bioanalysis 5, 2287 (2013)

    Article  Google Scholar 

  7. L. Menzel, A.A. Kosterev, R.F. Curl, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, W. Urban, Appl. Phys. B 72, 859 (2001)

    ADS  Article  Google Scholar 

  8. T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikołajczyk, R. Mędrzycki, B. Rutecka, Opt. Electron. Rev. 20, 34 (2012)

    Google Scholar 

  9. F.K. Tittel, D. Richter, A. Fried, in Solid-State Mid-Infrared Laser Sources, vol. 89, ed. by I.T. Sorokina, K.L. Vodopyanov (Springer, Berlin, 2003), pp. 445–516

    Chapter  Google Scholar 

  10. Photonics Spectrum Reference Chart, Commercial Lasers Lines. Available to order: https://e.laurin.com/Default.aspx

  11. J. Barria, S. Roux, J. Dherbecourt, M. Raybaut, J. Melkonian, A. Godard, M. Lefebvre, Opt. Lett. 38, 2165 (2013)

    Article  Google Scholar 

  12. B. Hardy, A. Berrou, S. Guilbaud, M. Raybaut, A. Godard, M. Lefebvre, Opt. Lett. 36, 678 (2011)

    ADS  Article  Google Scholar 

  13. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Science 264, 553 (1994). doi:10.1126/science.264.5158.553

    ADS  Article  Google Scholar 

  14. R.F. Curl, F. Capasso, C. Gmachl, A.A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F.K. Tittel, Chem. Phys. Lett. 487, 1 (2010)

    ADS  Article  Google Scholar 

  15. R. Engeln, G. Berden, R. Peeters, G. Meijer, Rev. Sci. Instrum. 69, 3763 (1998)

    ADS  Article  Google Scholar 

  16. J.B. Paul, L. Lapson, J.G. Anderson, App. Opt. 40, 4904 (2001)

    ADS  Article  Google Scholar 

  17. A. Rogalski, Z. Bielecki, in Handbook of Optoelectronics, ed. by J. Dakin, R. Brown (Taylor & Francis, New York, 2006), pp. 73–117

    Google Scholar 

  18. J. Wojtas, Z. Bielecki, Opto Electron. Rev. 16, 44 (2008)

    Article  Google Scholar 

  19. Photonic Devices, Electron Tube Devices and Applied Products, 2012. http://sales.hamamatsu.com/assets/pdf/catsandguides/p-dev_2012_TOTH0020E02.pdf

  20. A. Rogalski, Opto Electron. Rev. 20, 279 (2012)

    ADS  Article  Google Scholar 

  21. A. Piotrowski, P. Madejczyk, W. Gawron, K. Klos, M. Romanis, M. Grudzien, A. Rogalski, J. Piotrowski, Opto Electron. Rev. 12, 453 (2004)

    Google Scholar 

  22. J. Wojtas, J. Mikolajczyk, Z. Bielecki, Sensors 13, 7570 (2013). doi:10.3390/s130607570

    Article  Google Scholar 

  23. V.L. Kasyutich, I.R.K. Raj, P.A. Martin, Infrared Phys. Technol. 53, 381 (2010)

    ADS  Article  Google Scholar 

  24. P.Q. Liu, X. Wang, C.F. Gmachl, Appl. Phys. Lett. 101, 161115 (2012). doi:10.1063/1.4761247

    ADS  Article  Google Scholar 

  25. C. Gmachl, D.L. Sivco, R. Colombelli, F. Capasso, A.Y. Cho, Nature 415, 883 (2002)

    ADS  Article  Google Scholar 

  26. Z. Bozoki, A. Mohacsi, G. Szabo, Z. Bor, M. Erdelyi, W. Chen, F.K. Tittel, Appl. Spectrosc. 56, 715 (2002)

    ADS  Article  Google Scholar 

  27. A.A. Kosterev, Y.A. Bakhirkin, R.F. Curl, F.K. Tittel, Opt. Lett. 27, 1902 (2002)

    ADS  Article  Google Scholar 

  28. F.K. Tittel, L. Dong, R. Lewicki, G. Lee, A. Peralta, V. Spagnolo, Proc. SPIE 8268, 82680F–1 (2012). doi:10.1117/12.905621

    ADS  Article  Google Scholar 

  29. L. Dong, J. Wright, B. Peters, B.A. Ferguson, F.K. Tittel, S. McWhorter, Appl. Phys. B 107, 459 (2012). doi:10.1007/s00340-012-4908-x

    ADS  Article  Google Scholar 

  30. K. Namjou, S. Cai, E.A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, Opt. Lett. 23, 219 (1998)

    ADS  Article  Google Scholar 

  31. E. Normand, M. McCulloch, G. Duxbury, N. Langford, Opt. Lett. 28, 16 (2003)

    ADS  Article  Google Scholar 

Download references

Acknowledgments

These works were supported by the National Centre for Research and Development (research Project ID 179900) and the National Science Centre (research Project Nos. 2011/03/B/ST7/02544, O N515 216839, and O N515 217039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Wojtas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wojtas, J., Tittel, F.K., Stacewicz, T. et al. Cavity-Enhanced Absorption Spectroscopy and Photoacoustic Spectroscopy for Human Breath Analysis. Int J Thermophys 35, 2215–2225 (2014). https://doi.org/10.1007/s10765-014-1586-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-014-1586-4

Keywords

  • Absorption spectroscopy
  • Biomarker sensors
  • Cavity-enhanced spectroscopy
  • Gas sensors
  • Laser drivers
  • Laser spectroscopy
  • Photoacoustic spectroscopy