Advertisement

International Journal of Thermophysics

, Volume 35, Issue 12, pp 2215–2225 | Cite as

Cavity-Enhanced Absorption Spectroscopy and Photoacoustic Spectroscopy for Human Breath Analysis

  • J. Wojtas
  • F. K. Tittel
  • T. Stacewicz
  • Z. Bielecki
  • R. Lewicki
  • J. Mikolajczyk
  • M. Nowakowski
  • D. Szabra
  • P. Stefanski
  • J. Tarka
Article

Abstract

This paper describes two different optoelectronic detection techniques: cavity-enhanced absorption spectroscopy and photoacoustic spectroscopy. These techniques are designed to perform a sensitive analysis of trace gas species in exhaled human breath for medical applications. With such systems, the detection of pathogenic changes at the molecular level can be achieved. The presence of certain gases (biomarkers), at increased concentration levels, indicates numerous human diseases. Diagnosis of a disease in its early stage would significantly increase chances for effective therapy. Non-invasive, real-time measurements, and high sensitivity and selectivity, capable of minimum discomfort for patients, are the main advantages of human breath analysis. At present, monitoring of volatile biomarkers in breath is commonly useful for diagnostic screening, treatment for specific conditions, therapy monitoring, control of exogenous gases (such as bacterial and poisonous emissions), as well as for analysis of metabolic gases.

Keywords

Absorption spectroscopy Biomarker sensors Cavity-enhanced spectroscopy Gas sensors Laser drivers Laser spectroscopy Photoacoustic spectroscopy 

Notes

Acknowledgments

These works were supported by the National Centre for Research and Development (research Project ID 179900) and the National Science Centre (research Project Nos. 2011/03/B/ST7/02544, O N515 216839, and O N515 217039).

References

  1. 1.
    L. Pauling, A.B. Robinson, R. Teranishi, P. Cary, Proc. Natl. Acad. Sci. USA 68, 2374 (1971)ADSCrossRefGoogle Scholar
  2. 2.
    H. O’Neill, S.M. Gordon, M. O’Neill, R.D. Gibbons, J.P. Szidon, Clin. Chem. 34, 1613 (1988)Google Scholar
  3. 3.
    C. Wang, P. Sahay, Sensors 9, 8230 (2009). doi: 10.3390/s91008230 CrossRefGoogle Scholar
  4. 4.
    J. Wojtas, Z. Bielecki, T. Stacewicz, J. Mikolajczyk, M. Nowakowski, Opto Electron. Rev. 201, 77 (2012)Google Scholar
  5. 5.
    A. Ulanowska, T. Ligor, M. Michel, B. Buszewski, Ecol. Chem. Eng. S 17, 9 (2010)Google Scholar
  6. 6.
    B. Buszewski, D. Grzywinski, T. Ligor, T. Stacewicz, Z. Bielecki, J. Wojtas, Bioanalysis 5, 2287 (2013)CrossRefGoogle Scholar
  7. 7.
    L. Menzel, A.A. Kosterev, R.F. Curl, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, W. Urban, Appl. Phys. B 72, 859 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikołajczyk, R. Mędrzycki, B. Rutecka, Opt. Electron. Rev. 20, 34 (2012)Google Scholar
  9. 9.
    F.K. Tittel, D. Richter, A. Fried, in Solid-State Mid-Infrared Laser Sources, vol. 89, ed. by I.T. Sorokina, K.L. Vodopyanov (Springer, Berlin, 2003), pp. 445–516CrossRefGoogle Scholar
  10. 10.
    Photonics Spectrum Reference Chart, Commercial Lasers Lines. Available to order: https://e.laurin.com/Default.aspx
  11. 11.
    J. Barria, S. Roux, J. Dherbecourt, M. Raybaut, J. Melkonian, A. Godard, M. Lefebvre, Opt. Lett. 38, 2165 (2013)CrossRefGoogle Scholar
  12. 12.
    B. Hardy, A. Berrou, S. Guilbaud, M. Raybaut, A. Godard, M. Lefebvre, Opt. Lett. 36, 678 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Science 264, 553 (1994). doi: 10.1126/science.264.5158.553 ADSCrossRefGoogle Scholar
  14. 14.
    R.F. Curl, F. Capasso, C. Gmachl, A.A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F.K. Tittel, Chem. Phys. Lett. 487, 1 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    R. Engeln, G. Berden, R. Peeters, G. Meijer, Rev. Sci. Instrum. 69, 3763 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    J.B. Paul, L. Lapson, J.G. Anderson, App. Opt. 40, 4904 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    A. Rogalski, Z. Bielecki, in Handbook of Optoelectronics, ed. by J. Dakin, R. Brown (Taylor & Francis, New York, 2006), pp. 73–117Google Scholar
  18. 18.
    J. Wojtas, Z. Bielecki, Opto Electron. Rev. 16, 44 (2008)CrossRefGoogle Scholar
  19. 19.
    Photonic Devices, Electron Tube Devices and Applied Products, 2012. http://sales.hamamatsu.com/assets/pdf/catsandguides/p-dev_2012_TOTH0020E02.pdf
  20. 20.
    A. Rogalski, Opto Electron. Rev. 20, 279 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    A. Piotrowski, P. Madejczyk, W. Gawron, K. Klos, M. Romanis, M. Grudzien, A. Rogalski, J. Piotrowski, Opto Electron. Rev. 12, 453 (2004)Google Scholar
  22. 22.
    J. Wojtas, J. Mikolajczyk, Z. Bielecki, Sensors 13, 7570 (2013). doi: 10.3390/s130607570 CrossRefGoogle Scholar
  23. 23.
    V.L. Kasyutich, I.R.K. Raj, P.A. Martin, Infrared Phys. Technol. 53, 381 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    P.Q. Liu, X. Wang, C.F. Gmachl, Appl. Phys. Lett. 101, 161115 (2012). doi: 10.1063/1.4761247 ADSCrossRefGoogle Scholar
  25. 25.
    C. Gmachl, D.L. Sivco, R. Colombelli, F. Capasso, A.Y. Cho, Nature 415, 883 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    Z. Bozoki, A. Mohacsi, G. Szabo, Z. Bor, M. Erdelyi, W. Chen, F.K. Tittel, Appl. Spectrosc. 56, 715 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    A.A. Kosterev, Y.A. Bakhirkin, R.F. Curl, F.K. Tittel, Opt. Lett. 27, 1902 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    F.K. Tittel, L. Dong, R. Lewicki, G. Lee, A. Peralta, V. Spagnolo, Proc. SPIE 8268, 82680F–1 (2012). doi: 10.1117/12.905621 ADSCrossRefGoogle Scholar
  29. 29.
    L. Dong, J. Wright, B. Peters, B.A. Ferguson, F.K. Tittel, S. McWhorter, Appl. Phys. B 107, 459 (2012). doi: 10.1007/s00340-012-4908-x ADSCrossRefGoogle Scholar
  30. 30.
    K. Namjou, S. Cai, E.A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, Opt. Lett. 23, 219 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    E. Normand, M. McCulloch, G. Duxbury, N. Langford, Opt. Lett. 28, 16 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • J. Wojtas
    • 1
  • F. K. Tittel
    • 2
  • T. Stacewicz
    • 3
  • Z. Bielecki
    • 1
  • R. Lewicki
    • 2
    • 4
  • J. Mikolajczyk
    • 1
  • M. Nowakowski
    • 1
  • D. Szabra
    • 1
  • P. Stefanski
    • 2
    • 5
  • J. Tarka
    • 2
    • 5
  1. 1.Institute of OptoelectronicsMilitary University of TechnologyWarsawPoland
  2. 2.Electrical and Computer Engineering DepartmentRice UniversityHoustonUSA
  3. 3.Institute of Experimental PhysicsUniversity of WarsawWarsawPoland
  4. 4.Sentinel PhotonicsMonmouth JunctionUSA
  5. 5.Laser and Fiber Electronics GroupWroclaw University of TechnologyWroclawPoland

Personalised recommendations