Skip to main content
Log in

Thermally Induced Photoacoustic Transients Produced by Laser-Irradiated Fluid Spheres

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Pulsed laser irradiation of a weakly absorbing fluid sphere in a transparent medium results in the production of a large thermal gradient at the surface of the sphere. The rapid transfer of heat from the sphere to the surrounding fluid as a result of the thermal gradient generates high frequency photoacoustic transients which affect the leading edge of a photoacoustic wave. Here, the character of the photoacoustic wave is determined by solving a modified wave equation for the photoacoustic effect. A solution to the heat diffusion equation is determined, which, together with the heating function for the optical source, provides the source term for the wave equation for pressure. The wave equation is then solved with appropriate boundary conditions using Laplace transform techniques to give the photoacoustic waveform. The relative magnitude of the transient to the N-shaped wave is shown to be determined, in part, by the laser pulse length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. For water at 20 Celsius, \(\gamma \) differs from unity by less than 1 %. For organic liquids the approximation is not so good. For instance for toluene \(\gamma -1=0.35.\)

References

  1. V.E. Gusev, A.A. Karabutov, Laser Optoacoustics (American Institute of Physics, New York, 1993)

    Google Scholar 

  2. L.M. Lyamshev, Radiation Acoustics (CRC Press, Boca Raton, FL, 2004)

  3. L.M. Lyamshev, L.V. Sedov, Phys. Rev. 3, 459 (1981)

    Google Scholar 

  4. P.J. Westervelt, R.S. Larson, J. Acoust. Soc. Am. 54, 121 (1973)

    Article  ADS  Google Scholar 

  5. P.M. Morse, K.U. Ingard, Theoretical Acoustics (Harwood Academic, Reading, PA, 1991)

  6. F.V. Bunkin, A.A. Kolomensky, V.G. Mikhalevich, Lasers in Acoustics (Harwood Academic, Reading, PA, 1991)

  7. A.I. Bozhkov, F.V. Bunkin, A.A. Kolomenskii, V.G. Mikhalevich, Sov. Sci. Rev. A. Phys. Rev. 3, 459 (1981)

    Google Scholar 

  8. G.J. Diebold, M.I. Khan, S.M. Park, Science 250, 101 (1990)

    Article  ADS  Google Scholar 

  9. G.J. Diebold, P.J. Westervelt, J. Acoust. Soc. Am. 84, 2245 (1988)

    Article  ADS  Google Scholar 

  10. G.J. Diebold, A.C. Beveridge, T.J. Hamilton, J. Acoust. Soc. Am. 112, 1780 (2002)

    Article  ADS  Google Scholar 

  11. M.I. Khan, T. Sun, G.J. Diebold, J. Acoust. Soc. Am. 94, 931 (1993)

    Article  ADS  Google Scholar 

  12. G.J. Diebold, T. Sun, M.I. Khan, Phys. Rev. Lett. 67, 3384 (1991)

    Article  ADS  Google Scholar 

  13. T. Sun, G.J. Diebold, Nature 355, 806 (1992)

    Article  ADS  Google Scholar 

  14. L. Wang (ed.), Photoacoustic Imaging and Spectroscopy (CRC Press, Boca Raton, FL, 2009)

    Google Scholar 

  15. B. Wu, C. Frez, G.J. Diebold, Appl. Phys. Lett. 103, 124105 (2013)

    Google Scholar 

  16. S. Temkin, Elements of Acoustics (Wiley, New York, 1981)

    Google Scholar 

  17. C. Frez, Transient Gratings in Particle Suspensions: The Effect of Thermal Nonlinearity and Bubble Formation. Ph.D. Thesis (Brown University, Providence, RI, 2008)

  18. A. Erdelyi (ed.), Bateman Manuscript Project (McGraw-Hill, New York, 1954)

    Google Scholar 

  19. M. Abramowitz, I. A. Stegun (eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series No. 55 (National Bureau of Standards, Gaithersburg, MD, 1964)

  20. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Oxford University Press, Oxford, 1998)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the US Department of Energy for support of this research under Grant ER16011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald J. Diebold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frez, C., Diebold, G.J. Thermally Induced Photoacoustic Transients Produced by Laser-Irradiated Fluid Spheres. Int J Thermophys 35, 2171–2177 (2014). https://doi.org/10.1007/s10765-013-1558-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-013-1558-0

Keywords

Navigation