Skip to main content

Advertisement

Log in

Thermal-Lens Study on the Distance-Dependent Energy Transfer from Rhodamine 6G to Gold Nanoparticles

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A study on energy transfer from the Rhodamine 6G (donor) to gold nanoparticles (acceptor) is investigated using a laser-based dual-beam thermal-lens technique. The nanoparticles are observed to quench the intrinsic fluorescence of the dye molecule via a nonradiative energy transfer mechanism. The influence of nanoparticle concentration \((0.09\,\hbox {nM}\,\hbox {to}\,0.24\,\hbox {nM})\) on the energy transfer mechanism with Rhodamine 6G \((1\;\upmu \hbox {M})\) is investigated. Analysis of the results indicates that the energy transfer efficiency is high (more than 50 %) in the presence of nanoparticles and the efficiency is enhanced with an increase in the nanoparticle concentration. The distance between the nanoparticle and dye molecule is evaluated on the basis of the nanomaterial surface energy transfer model. The thermal-lens studies probe the nonradiative path of de-excitation of the excited molecule, and the comparison between this technique and the conventional fluorescence method in measuring the distance as well as the energy-transfer efficiency clearly indicates that the thermal-lens technique is a complementary approach to study the energy-transfer mechanism between a donor and an acceptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.C. Daniel, D. Astruc, Chem. Rev. 104, 293 (2004)

    Article  Google Scholar 

  2. W. Deng, E.M. Goldys, Langmuir 28, 10152 (2012)

    Article  Google Scholar 

  3. J. Zhang, J.R. Lakowicz, Opt. Express 15, 2598 (2007)

    Article  ADS  Google Scholar 

  4. E. Dulkeith, A.C. Morteani, T. Niedereichholz, T.A. Klar, J. Feldmann, Phys. Rev. Lett. 89, 203002 (2002)

    Article  ADS  Google Scholar 

  5. N.N. Horimoto, K. Imura, H. Okamoto, Chem. Phys. Lett. 467, 105 (2008)

    Article  ADS  Google Scholar 

  6. T. Sen, A. Patra, J. Phys. Chem. C 116, 17307 (2012)

    Article  Google Scholar 

  7. Y.C. Yeh, B. Creran, V.M. Rotello, Nanoscale 4, 1871 (2012)

    Article  ADS  Google Scholar 

  8. K. Saha, S.S. Agasti, C. Kim, X. Li, V.M. Rotello, Chem. Rev. 112, 2739 (2012)

    Article  Google Scholar 

  9. L. Dykman, N. Khlebtsov, Chem. Soc. Rev. 41, 2256 (2012)

    Article  Google Scholar 

  10. S. Link, M.A. EI-Sayed, J. Phys. Chem. B 103, 4212 (1999)

    Article  Google Scholar 

  11. P.V. Kamat, J. Phys. Chem. B 106, 7729 (2002)

    Article  Google Scholar 

  12. S. Eustis, M.A. EI-Sayed, Chem. Soc. Rev. 35, 209 (2005)

    Article  Google Scholar 

  13. E.A. Coronado, E.R. Encina, F.D. Stefani, Nanoscale 3, 4042 (2011)

    Article  ADS  Google Scholar 

  14. S. Saini, G. Srinivas, B. Bagchi, J. Phys. Chem. B 113, 1817 (2009)

    Article  Google Scholar 

  15. R.S. Swathi, K.L. Sebastian, J. Chem. Phys. 126, 234701 (2007)

    Article  ADS  Google Scholar 

  16. L. Zhao, T. Ming, L. Shao, H. Chen, J. Wang, J. Phys. Chem. C 116, 8287 (2012)

    Article  Google Scholar 

  17. Th Forster, Ann. Phys. (Leipzig) 2, 55 (1948)

    Article  ADS  Google Scholar 

  18. Th Förster, Delocalized Excitation and Excitation Transfer (Academic Press, New York, 1965)

    Google Scholar 

  19. C.S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N.O. Reich, G.F. Strouse, J. Am. Chem. Soc. 127, 3115 (2005)

    Article  Google Scholar 

  20. S. Bhowmick, S. Saini, V.B. Shenoy, B. Bagchi, J. Chem. Phys. 125, 181102 (2006)

    Article  ADS  Google Scholar 

  21. T.L. Jennings, M.P. Singh, G.F. Strouse, J. Am. Chem. Soc. 128, 5462 (2006)

    Article  Google Scholar 

  22. S. Weiss, Science 283, 1676 (1999)

    Article  ADS  Google Scholar 

  23. T. Ha, Methods 25, 78 (2001)

    Article  Google Scholar 

  24. S. Chatterjee, J.B. Lee, N.V. Valappil, D. Luo, V.M. Menon, Biomed. Opt. Express 2, 1727 (2011)

    Article  Google Scholar 

  25. S.A. Joseph, S. Mathew, G. Sharma, M. Hari, A. Kurian, P. Radhakrishnan, Plasmonics 5, 63 (2010)

    Article  Google Scholar 

  26. A. Kurian, S.D. George, C.V. Bindhu, V.P.N. Nampoori, C.P.G. Vallabhan, Spectrochim. Acta A 67, 678 (2007)

    Article  ADS  Google Scholar 

  27. A. Kurian, N.A. George, B. Paul, V.P.N. Nampoori, C.P.G. Vallabhan, Laser Chem. 20, 99 (2002)

    Article  Google Scholar 

  28. A. Kurian, S.D. George, V.P.N. Nampoori, C.P.G. Vallabhan, Spectrochim. Acta A 61, 2799 (2005)

    Article  ADS  Google Scholar 

  29. L. Dong, F. Ye, J. Hu, S. Popov, A.T. Friberg, M.J. Muhammed, Eur. Opt. Soc. Rapid Publ. 6, 11019 (2011)

    Article  Google Scholar 

  30. L. Dong, F. Ye, A. Chughtai, S. Popov, A.T. Friberg, M. Muhammed, Opt. Lett. 37, 34 (2012)

    Article  ADS  Google Scholar 

  31. G. Frens, Nat. Phys. Sci. 241, 20 (1973)

    Article  ADS  Google Scholar 

  32. J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn. (Springer, New York, 2006)

    Book  Google Scholar 

  33. M. Swierczewska, S. Lee, X. Chen, Phys. Chem. Chem. Phys. 13, 9929 (2011)

    Article  Google Scholar 

  34. D.J. Maxwell, J.R. Taylor, S. Nie, J. Am. Chem. Soc. 124, 9606 (2002)

    Article  Google Scholar 

  35. T. Sen, S. Sadhu, A. Patra, Appl. Phys. Lett. 91, 043104 (2007)

    Article  ADS  Google Scholar 

  36. T. Sen, A. Patra, J. Phys. Chem. C 112, 3216 (2008)

    Article  Google Scholar 

  37. J.H. Brannon, D. Magde, J. Phys. Chem. 82, 705 (1978)

    Article  Google Scholar 

  38. A. Santhi, M. Umadevi, V. Ramakrishnan, P. Radhakrishnan, V.P.N. Nampoori, Spectrochim. Acta A 60, 1077 (2004)

    Article  ADS  Google Scholar 

  39. C.V. Bindhu, S.S. Harilal, V.P.N. Nampoori, C.P.G. Vallabhan, Mod. Phys. Lett. B 13, 563 (1999)

    Article  ADS  Google Scholar 

  40. A. Kurian, S.T. Lee, K.P. Unnikrishnan, D.S. George, V.P.N. Nampoori, C.P.G. Vallabhan, Nonlinear Opt. Phys. Mater. 12, 75 (2003)

    Article  Google Scholar 

  41. N.S. Basheer, B.R. Kumar, A. Kurian, S.D. George, J. Lumin. 137, 225 (2013)

    Article  Google Scholar 

  42. H. Han, V. Valle, M.M. Maye, Nanotechnology 23, 435401 (2012)

    Article  ADS  Google Scholar 

  43. Y.S. El-Sayed, M. Gaber, Adv. Nanoparticles 1, 54 (2012)

    Article  Google Scholar 

  44. M.P. Singh, G.F. Strouse, J. Am. Chem. Soc. 132, 9383 (2010)

    Article  Google Scholar 

  45. B.N.J. Persson, N.D. Lang, Phys. Rev. B 26, 5409 (1982)

    Article  ADS  Google Scholar 

  46. K.K. Haldar, T. Sen, A. Patra, J. Phys. Chem. C 112, 11650 (2008)

    Article  Google Scholar 

  47. N.S. Basheer, B.R. Kumar, A. Kurian, S.D. George, Appl. Phys. B. doi:10.1007/s00340-013-5513-3

  48. B.R. Kumar, N.S. Basheer, S.D. George, A. Kurian, in Proceedings of the IEEE, 2012, p. 149

  49. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995)

    Book  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the University Grants Commission (UGC), India through the project F. No. 34-31/2008 (SR) dated 20/12/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajan D. George.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, B.R., Basheer, N.S., Kurian, A. et al. Thermal-Lens Study on the Distance-Dependent Energy Transfer from Rhodamine 6G to Gold Nanoparticles. Int J Thermophys 34, 1982–1992 (2013). https://doi.org/10.1007/s10765-013-1514-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-013-1514-z

Keywords

Navigation