International Journal of Thermophysics

, Volume 34, Issue 10, pp 1845–1864 | Cite as

Exploratory Characterization of a Perfluoropolyether Oil as a Possible Viscosity Standard at Deepwater Production Conditions of 533 K and 241 MPa

  • Hseen O. Baled
  • Deepak Tapriyal
  • Bryan D. Morreale
  • Yee Soong
  • Isaac Gamwo
  • Val Krukonis
  • Babatunde A. Bamgbade
  • Yue Wu
  • Mark A. McHugh
  • Ward A. Burgess
  • Robert M. Enick
Article

Abstract

DuPont’s perfluoropolyether oil Krytox\(^{\textregistered }\) GPL 102 is a promising candidate for the high-temperature, high-pressure Deepwater viscosity standard (DVS). The preferred DVS is a thermally stable liquid that exhibits a viscosity of roughly 20 \(\hbox {mPa} \cdot \hbox {s}\) at 533 K and 241 MPa; a viscosity value representative of light oils found in ultra-deep formations beneath the deep waters of the Gulf of Mexico. A windowed rolling-ball viscometer designed by our team is used to determine the Krytox\(^{\textregistered }\) GPL 102 viscosity at pressures to 245 MPa and temperatures of 311 K, 372 K, and 533 K. At 533 K and 243 MPa, the Krytox\(^{\textregistered }\) GPL 102 viscosity is \((27.2 \pm 1.3)\,\hbox {mPa} \cdot \hbox {s}\). The rolling-ball viscometer viscosity results for Krytox\(^{\textregistered }\) GPL 102 are correlated with an empirical 10-parameter surface fitting function that yields an MAPD of 3.9 %. A Couette rheometer is also used to measure the Krytox\(^{\textregistered }\) GPL 102 viscosity, yielding a value of \((26.2 \pm 1)\,\hbox {mPa} \cdot \hbox {s}\) at 533 K and 241 MPa. The results of this exploratory study suggest that Krytox\(^{\textregistered }\, \hbox {GPL}\) 102 is a promising candidate for the DVS, primarily because this fluoroether oil is thermally stable and exhibits a viscosity closer to the targeted value of 20 mPa \(\cdot \) s at 533 K and 241 MPa than any other fluid reported to date. Nonetheless, further studies must be conducted by other researcher groups using various types of viscometers and rheometers on samples of Krytox GPL\(^{\textregistered }\) 102 from the same lot to further establish the properties of Krytox GPL\(^{\textregistered }\) 102.

Keywords

Couette rheometer Deepwater viscosity standard High pressure Krytox\(^{\textregistered }\) oil Rolling-ball viscometer 

References

  1. 1.
    Minutes of the 9th IATP Meeting. (IATP Meeting, June 20, 2009, Boulder, CO), http://transp.cheng.auth.gr/mja/iatp/09_Boulder_Min.pdf. Accessed Dec 2012
  2. 2.
    HTHP Viscosity Standards Workshop Executive Summary. (HTHP Viscosity Standards Workshop, Jan 22, 2010), https://www.slb.com/~/media/Files/core_pvt_lab/other/hpht_viscosity_standards_workshop_2010_summary.pdf. Accessed Dec 2012
  3. 3.
    R. Kasameyer, D. Airey, J. Cole, Viscometer State-of-the-Art (HTHP Viscosity Standards Workshop, Jan 22, 2010), https://www.slb.com/~/media/Files/core_pvt_lab/other/high_pressure_viscometers.pdf. Accessed Dec 2012
  4. 4.
    A. Goodwin, Plausible Industrial Reference Fluids for Viscosity (HTHP Viscosity Standards Workshop, Jan 22, 2010), https://www.slb.com/~/media/Files/core_pvt_lab/other/industrial_reference_fluids_viscosity.pdf. Accessed Dec 2012
  5. 5.
    K.J.L. Paciorek, R.H. Kratzer, J. Kaufman, J.H. Nakahara, J. Appl. Polym. Sci. 24, 1397 (1979)CrossRefGoogle Scholar
  6. 6.
    www.krytox.com. Accessed June 2013
  7. 7.
    R. Fix, ChemPoint. Private communication (2013)Google Scholar
  8. 8.
    R. Enick, E. Beckman, A. Yazdi, V. Krukonis, H. Schonemann, J. Howell, J. Supercrit. Fluids 13, 121 (1998)CrossRefGoogle Scholar
  9. 9.
    M.E. Paulaitis, V.J. Krukonis, R. Kurnik, R. Reid, Rev. Chem. Eng. 1, 179 (1983)Google Scholar
  10. 10.
    W. Gussler, M. Pless, J. Maxey, P. Grover, J. Perez, J. Moon, T. Boaz, SPE Drill Complet. 22, 81 (2007)CrossRefGoogle Scholar
  11. 11.
    B.A. Bamgbade, Y. Wu, W.A. Burgess, M.A. McHugh, Fluid Phase Equilib. 332, 159 (2012)CrossRefGoogle Scholar
  12. 12.
    K. Selby, DuPont performance lubricants. Private communication (2010)Google Scholar
  13. 13.
    R.V. Kleinschmidt, D. Bradbury, M. Mark, in Viscosity and Density of over Forty Lubricating Fluids of Known Composition at Pressures to 150,000 psi and Temperatures to 425 F (ASME Report, New York, 1953)Google Scholar
  14. 14.
    K. Harris, J. Chem. Eng. Data 54, 2729 (2009)CrossRefGoogle Scholar
  15. 15.
    S. Sawamura, T. Yamashita, Rolling-ball viscometer for studying water and aqueous solutions under high pressure, in Proceedings of the 14th International Conference on the Properties of Water and Steam (Kyoto, 2004), p. 429Google Scholar
  16. 16.
    H.O. Baled, Density and viscosity of hydrocarbons at extreme conditions associated with ultra-deep reservoirs-measurements and modeling. Dissertation, University of Pittsburgh, 2012Google Scholar
  17. 17.
    B.A. Bamgbade, Y. Wu, H.O. Baled, R.M. Enick, W.A. Burgess, D. Tapriyal, M.A. McHugh, J. Chem. Thermodyn. 63, 102 (2013)CrossRefGoogle Scholar
  18. 18.
    H. Baled, R. Enick, W. Burgess, J. Jain, B. Morreale, Y. Soong, D. Tapriyal, Y. Wu, B. Bamgbade, M.A. McHugh, in A windowed, variable-volume, rolling-ball viscometer rated to \(260^{\circ }\text{ C }\) and 275 MPa, presented at 18th Symposium on Thermophysical Properties (Boulder, CO, 2012)Google Scholar
  19. 19.
    J.H. Dymond, R. Malhotra, Int. J. Thermophys. 9, 941 (1988)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Sato, H. Yoshioka, S. Aikawa, R.L. Smith Jr, Int. J. Thermophys. 31, 1896 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    M. Izuchi, K. Nishibata, Jpn. J. Appl. Phys. 25, 1091 (1986)ADSCrossRefGoogle Scholar
  22. 22.
    Inconel\(^{\textregistered }\) alloy 718, http://www.specialmetals.com/products/inconelalloy718.php. Accessed June 2013
  23. 23.
    R.M. Hubbard, G.G. Brown, Ind. Eng. Chem. Anal. Ed. 15, 212 (1943)Google Scholar
  24. 24.
    Wolfram Alpha, http://www.wolframalpha.com/. Accessed May 2013
  25. 25.
    J. Šesták, F. Ambros, Rheol. Acta 12, 70 (1973)CrossRefGoogle Scholar
  26. 26.
    E.W. Lemmon, M.O. McLinden, D.G. Friend, in Thermophysical Properties of Fluid Systems, NIST Chemistry Webbook, NIST Standard Reference Database Number 69, ed. by P.J. Lindstrom, W.G. Mallard (National Institute of Standards and Technology, Gaithersburg, MD), http://webbook.nist.gov/chemistry/fluid/. Accessed Dec 2012
  27. 27.
    H. Baled, R.M. Enick, W. Burgess, D. Tapriyal, B.D. Morreale, Y. Wu, B.A. Bamgbade, M.A. McHugh, S. Bair, V. Krukonis, in Perfluoropolyether oils as Candidates for the Deepwater Viscosity Standard of 20 cP at \(500^{\circ }\text{ F }\) and 35000 psia, Presented at 12th IATP Meeting (June 24, 2012, Boulder, CO), Minutes of the 12th IATP Meeting, http://transp.eng.auth.gr/index.php/iatp/2012. Accessed Aug 2013

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Hseen O. Baled
    • 1
    • 2
  • Deepak Tapriyal
    • 1
    • 3
  • Bryan D. Morreale
    • 1
  • Yee Soong
    • 1
  • Isaac Gamwo
    • 1
  • Val Krukonis
    • 4
  • Babatunde A. Bamgbade
    • 1
    • 5
  • Yue Wu
    • 1
    • 5
  • Mark A. McHugh
    • 1
    • 5
  • Ward A. Burgess
    • 1
  • Robert M. Enick
    • 1
    • 2
  1. 1.National Energy Technology Laboratory, Office of Research and Development, Department of EnergyPittsburghUSA
  2. 2.Department of Chemical and Petroleum EngineeringUniversity of PittsburghPittsburghUSA
  3. 3.URSNETL Site Support ContractorPittsburghUSA
  4. 4.Phasex CorporationLawrenceUSA
  5. 5.Department of Chemical and Life Science EngineeringVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations