Skip to main content
Log in

First-Principles Investigation of Thermophysical Properties of Cubic ZrC Under High Pressure

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

With a motivation to understand the effect of pressure on the thermophysical properties of a transition metal carbide, zirconium carbide (ZrC) in rock salt (RS) and CsCl phases, a systematic study of the thermodynamic functions with pressure for ZrC in both phases is performed. First-principles theoretical calculations are used, based on density functional perturbation theory within the generalized gradient approximation and with a quasi-harmonic approximation. The results demonstrate that the free and internal energies are greater while the specific heat at constant volume and entropy is smaller for the RS phase of ZrC than for the CsCl phase. The pressure significantly affects the thermodynamic functions. The results also demonstrate that the effect of increasing pressure on ZrC is the same as that of decreasing temperature. The k-point convergence of the phonon spectrum at zero pressure is also analyzed, which may be useful for investigating the pressure-induced dynamic instabilities in the transition metal carbide, ZrC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. V.A. Gubanov, A.L. Ianovsky, V.P. Zhukov, Electronic Structure of Refractory Carbides and Nitrides (Cambridge University Press, Cambridge, 1994)

    Book  Google Scholar 

  2. E.K. Storms, The Refractory Carbides (Academic Press, New York, 1967)

    Google Scholar 

  3. L.E. Toth, Transition Metal Carbides and Nitrides (Academic Press, New York, 1971)

    Google Scholar 

  4. E. Rudy, Compendium of Phase Diagram Data (Metals and Ceramics Division, Air Force Materials Laboratory, Wright-Patterson AFB, 1969), p. 162

    Google Scholar 

  5. D.L. Price, B.R. Cooper, J.M. Wills, Phys. Rev. B 46, 11368 (1992)

    Article  ADS  Google Scholar 

  6. X.M. He, L. Shu, H.B. Li, J. Mater. Res. 14, 615 (1999)

    Article  ADS  Google Scholar 

  7. S. Mecabih, N. Amrane, Z. Nabi, B. Abbar, H. Aourag, Phys. A 285, 392 (2000)

    Article  Google Scholar 

  8. J.F. Alward, C.Y. Fong, M. El-Batnouny, F. Wooten, Phys. Rev. B 12, 1105 (1975)

    Article  ADS  Google Scholar 

  9. H. Wipf, M.V. Klein, W.S. Williams, Phys. Status Solidi B 108, 489 (1981)

    Article  ADS  Google Scholar 

  10. F.A. Modine, W. Haywood, C.Y. Allison, Phys. Rev. B 32, 7743 (1985)

    Article  ADS  Google Scholar 

  11. L.N. Grossman, J. Am. Ceram. Soc. 48, 236 (1995)

    Article  Google Scholar 

  12. H. Fu, W. Peng, T. Gao, Mater. Chem. Phys. 115, 2 (2009)

    Google Scholar 

  13. J. Kim, Sh Kang, J. Alloys Compd. 574, 99 (2012)

    Google Scholar 

  14. A. Abdollahi, Phys. B Condens. Matter 410, 57 (2013)

    Article  ADS  Google Scholar 

  15. N. Rathod, S.K. Gupta, P.K. Jha, Phase Transitions 85, 1060 (2012)

    Article  Google Scholar 

  16. Z. Lv, H. Hu, C. Wu, S. Cui, G. Zhang, W. Feng, Phys. B 406, 2750 (2011)

    Article  ADS  Google Scholar 

  17. A. Hao, T. Zhou, Y. Zhu, X. Zhang, R. Liu, Mater. Chem. Phys. 129, 99 (2011)

    Article  ADS  Google Scholar 

  18. P. de Giannozzi, S. Gironcoli, P. Pavone, S. Baroni, Phys. Rev. B 43, 7231 (1991)

    Article  ADS  Google Scholar 

  19. X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi, S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger, Comput. Phys. Commun. 180, 2582 (2009)

  20. X. Gonze, G.-M. Rignanese, M. Verstraete, J.-M. Beuken, Y. Pouillon, R. Caracas, F. Jollet, M. Torrent, G. Zerah, M. Mikami, Ph. Ghosez, M. Veithen, J.-Y. Raty, V. Olevano, F. Bruneval, L. Reining, R. Godby, G. Onida, D.R. Hamann, D.C. Allan, Z. Kristallogr. 220, 558 (2005)

  21. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  22. H.J. Monhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  23. V. Mankad, N. Rathod, S.D. Gupta, S.K. Gupta, P.K. Jha, Mater. Chem. Phys. 129, 816 (2011)

    Article  Google Scholar 

  24. C. Lee, X. Gonze, Phys. Rev. B 51, 8610 (1995)

    Article  ADS  Google Scholar 

  25. P.K. Jha, S.P. Sanyal, Phys. C 271, 6 (1996)

    Article  ADS  Google Scholar 

  26. W. Nernst, A.F. Lindemann, Z. Elektrochem. Angew. Phys. Chem. 17, 817 (1911)

    Google Scholar 

  27. A.T. Petit, P.L. Dulong, Ann. Chim. Phys. 10, 395 (1819)

    Google Scholar 

Download references

Acknowledgments

Financial assistance from Department of Science and Technology, New Delhi and Department of Atomic Energy, Mumbai, Govt. of India is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prafulla K. Jha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rathod, N., Gupta, S.K., Shinde, S. et al. First-Principles Investigation of Thermophysical Properties of Cubic ZrC Under High Pressure. Int J Thermophys 34, 2019–2026 (2013). https://doi.org/10.1007/s10765-013-1498-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-013-1498-8

Keywords

Navigation