Skip to main content

Electrolytic Conductivity of Four Imidazolium-Based Ionic Liquids

Abstract

In this article, electrolytic (ionic) conductivity measurements of four ionic liquids (ILs), namely, 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] imide ([C\(_{2}\)mim][NTf\(_{2}\)]), 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([C\(_{2}\)mim][OTf]), 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([C\(_{6}\)mim][NTf\(_{2}\)]), and 1-ethyl-3-methylimidazolium ethyl sulfate ([C\(_{2}\)mim][EtSO\(_{4}\)]) (ECOENG212\(^\circledR \)), were performed in a temperature range of (288.15 to 333.15) K. [C\(_{6}\)mim][NTf\(_{2}\)] was chosen to be a reference ionic liquid for several properties, including the electrolytic conductivity by the IUPAC Project 2002-005-1-100. For that reason, the measurements performed with that ionic liquid primarily serve the purpose to validate the instrumentation and the experimental procedure used in this work. The measurements were carried out using a complex impedance method, applying a novel electronic device designed and constructed for this purpose. The complete setup includes a Schott Instruments LF 913 T, used as a four-electrode conductivity cell, and a lock-in amplifier. The cell was calibrated using standard reference KCl aqueous solutions. The measurements of the impedance of the conductivity cell were carried out along a range of frequencies from (0.2 to 30) kHz, and the results were extrapolated to infinite frequency, in order to determine the electrolytic conductivity of the liquid samples. The results obtained for the ionic liquid [C\(_{6}\)mim][NTf\(_{2}\)] were compared to reference data, and it was estimated that the overall uncertainty of the present results is better than 2 %. All the data obtained were compared with available literature data, and were analyzed and discussed in respect to the effect of temperature, cation alkyl chain length, and anion.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Notes

  1. Conductivity Standard 0.1D, 12.85 mS \(\cdot \) cm\(^{-1}\) \(\pm \) 0.35 % @ 25 \(^\circ \) C, manufactured by Hach Lange GmbH for Radiometer Analytical SAS, Serial Number C01600, Calibration mark 000313/DKD-K-47901/10-03, (Villeurbanne Cedex, France, 2010).

  2. Conductivity Standard 0.1D, 12.85 mS \(\cdot \) cm\(^{-1}\) \(\pm \) 0.35 % @ 25 \(^\circ \) C, manufactured by Hach Lange GmbH for Radiometer Analytical SAS, Serial Number C01600, Calibration mark 000313/DKD-K-47901/10-03, (Villeurbanne Cedex, France, 2010).

References

  1. D.R. MacFarlane, K.R. Seddon, Aust. J. Chem. 60, 3 (2007)

    Article  Google Scholar 

  2. Y.U. Paulechka, G.J. Kabo, A.V. Blokhin, O.A. Vydrov, J.W. Magee, M. Frenkel, J. Chem. Eng. Data 48, 457 (2003)

    Article  Google Scholar 

  3. L.P.N. Rebelo, J.N.C. Lopes, J.M.S.S. Esperança, E. Filipe, J. Phys. Chem. B 109, 6040 (2005)

    Article  Google Scholar 

  4. M.J. Earle, J.M.S.S. Esperança, M.A. Gilea, J.N.C. Lopes, L.P.N. Rebelo, J.W. Magee, K.R. Seddon, J.A. Widegren, Nature 439, 831 (2006)

    ADS  Article  Google Scholar 

  5. L.P.N. Rebelo, J.N.C. Lopes, J.M.S.S. Esperança, H.J.R. Guedes, J. Lachwa, V. Najdanovic-Visak, Z.P. Visak, Acc. Chem. Res. 40, 1114 (2007)

    Article  Google Scholar 

  6. U. Domanska, A. Marciniak, J. Phys. Chem. B 108, 2376 (2004)

    Article  Google Scholar 

  7. L. Crowhurst, P.R. Mawdsley, J.M. Perez-Arlandis, P.A. Salter, T. Welton, Phys. Chem. Chem. Phys. 5, 2790 (2003)

    Article  Google Scholar 

  8. L. Cammarata, S.G. Kazarian, P.A. Salter, T. Welton, Phys. Chem. Chem. Phys. 3, 5192 (2001)

    Article  Google Scholar 

  9. K.J. Baranyai, G.B. Deacon, D.R. MacFarlane, J.M. Pringle, J.L. Scott, Aust. J. Chem. 57, 145 (2004)

    Article  Google Scholar 

  10. T. Tsuda, C.L. Hussey, Electrochem. Soc. Interface 16, 42 (2007)

    Google Scholar 

  11. E.I. Rogers, B. Šljukić, C. Hardacre, R.G. Compton, J. Chem. Eng. Data 54, 2049 (2009)

    Article  Google Scholar 

  12. M.C. Buzzeo, C. Hardacre, R.G. Compton, Chem. Phys. Chem. 7, 176 (2006)

    Article  Google Scholar 

  13. S.P. Ong, O. Andreussi, Y. Wu, N. Marzari, G. Ceder, Chem. Mater. 23, 2979 (2011)

    Article  Google Scholar 

  14. A.B. McEwen, S.F. McDevitt, V.R. Koch, J. Electrochem. Soc. 144, L84 (1997)

    Article  Google Scholar 

  15. A.B. McEwen, H.L. Ngo, K. LeCompte, J.L. Goldman, J. Electrochem. Soc. 146, 1687 (1999)

    Article  Google Scholar 

  16. A. Lewandowski, M. Galinski, J. Phys. Chem. Solids 65, 281 (2004)

    ADS  Article  Google Scholar 

  17. B. Garcia, S. Lavallée, G. Perron, C. Michot, M. Armand, Electrochim. Acta 49, 4583 (2004)

    Article  Google Scholar 

  18. H. Matsumoto, T. Matsuda, Y. Miyazaki, Chem. Lett. 12, 1430 (2000)

    Article  Google Scholar 

  19. H. Nakagawa, S. Izuchi, K. Kuwana, T. Nukuda, Y. Aihara, J. Electrochem. Soc. 150, A695 (2003)

    Article  Google Scholar 

  20. H. Sakaebe, H. Matsumoto, K. Tatsumi, Electrochim. Acta 53, 1048 (2007)

    Article  Google Scholar 

  21. P. Bonhôte, A.P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Grätzel, Inorg. Chem. 35, 1168 (1996)

    Article  Google Scholar 

  22. P.A.Z. Suarez, S. Einloft, J.E.L. Dullius, R.F. de Souza, J. Dupont, J. Chem. Phys. 95, 1626 (1998)

    Google Scholar 

  23. H. Tokuda, K. Hayamizu, K. Ishii, M.A.B.H. Susan, M. Watanabe, J. Phys. Chem. B 108, 16593 (2004)

    Article  Google Scholar 

  24. J.A. Widegren, E.M. Saurer, K.N. Marsh, J.W. Magee, J. Chem. Thermodyn. 37, 569 (2005)

    Article  Google Scholar 

  25. H. Tokuda, S. Tsuzuki, M.A.B.H. Susan, K. Hayamizu, M. Watanabe, J. Phys. Chem. B 110, 19593 (2006)

    Article  Google Scholar 

  26. J. Vila, P. Ginés, E. Rilo, O. Cabeza, L.M. Varela, Fluid Phase Equilib. 247, 32 (2006)

    Article  Google Scholar 

  27. J. Vila, P. Ginés, J.M. Pico, C. Franjo, E. Jiménez, L.M. Varela, O. Cabeza, Fluid Phase Equilib. 242, 141 (2006)

    Article  Google Scholar 

  28. M. Kanakubo, K.R. Harris, N. Tsuchihashi, K. Ibuki, M. Ueno, Fluid Phase Equilib. 261, 414 (2007)

    Article  Google Scholar 

  29. Y. Yoshida, O. Baba, G. Saito, J. Phys. Chem. B 111, 4742 (2007)

    Article  Google Scholar 

  30. M. Kanakubo, K.R. Harris, N. Tsuchihashi, K. Ibuki, M. Ueno, J. Phys. Chem. B 111, 2062 (2007)

    Article  Google Scholar 

  31. Y.O. Andryko, W. Reischl, G.E. Nauer, J. Chem. Eng. Data 54, 855 (2009)

    Article  Google Scholar 

  32. J.A. Widegren, J.W. Magee, J. Chem. Eng. Data 52, 2331 (2007)

    Article  Google Scholar 

  33. J. Leys, M. Wübbenhorst, C.P. Menon, R. Rajesh, J. Thoen, C. Glorieux, P. Nockemann, B. Thijs, K. Binnemans, S. Longuemart, J. Chem. Phys. 128, 064509 (2008)

    ADS  Article  Google Scholar 

  34. S. Seki, K. Hayamizu, S. Tsuzuki, K. Fujii, Y. Umebayashi, T. Mitsugi, T. Kobayashi, Y. Ohno, Y. Kobayashi, Y. Mita, H. Miyashiro, S. Ishiguro, Phys. Chem. Chem. Phys. 11, 3509 (2009)

    Article  Google Scholar 

  35. F.J.V. Santos, C.A. Nieto de Castro, P.J.F. Mota, A.P.C. Ribeiro, Int. J. Thermophys. 31, 1869 (2010)

    ADS  Article  Google Scholar 

  36. O. Zech, A. Stoppa, R. Buchner, W. Kunz, J. Chem. Eng. Data 55, 1774 (2010)

    Article  Google Scholar 

  37. A. Stoppa, O. Zech, W. Kunz, R. Buchner, J. Chem. Eng. Data 55, 1768 (2010)

    Article  Google Scholar 

  38. S. Seki, T. Kobayashi, N. Serizawa, Y. Kobayashi, K. Takei, H. Miyashiro, K. Hayamizu, S. Tsuzuki, T. Mitsugi, Y. Umebayashi, M. Watanabe, J. Power Sources 195, 6207 (2010)

    Article  Google Scholar 

  39. K.R. Harris, L.A. Woolf, M. Kanakubo, T. Rüther, J. Chem. Eng. Data 56, 4672 (2011)

    Article  Google Scholar 

  40. A. Pinkert, K.L. Ang, K.N. Marsh, S. Pang, Phys. Chem. Chem. Phys. 13, 5136 (2011)

    Article  Google Scholar 

  41. S. Seki, N. Serizawa, K. Hayamizu, S. Tsuzuki, Y. Umebayashi, K. Takei, H. Miyashiro, J. Electrochem. Soc. 159, A967 (2012)

    Article  Google Scholar 

  42. F.J.P. Caetano, J.M.N.A. Fareleira, C.M.B.P. Oliveira, W.A. Wakeham, J. Chem. Eng. Data 50, 201 (2005)

    Article  Google Scholar 

  43. J.L. Correia da Mata, F.J.P. Caetano, C.M.B.P. Oliveira, J.M.N.A. Fareleira, J. Chem. Eng. Data 54, 2562 (2009)

    Article  Google Scholar 

  44. F.J.P. Caetano, J.L. Correia da Mata, J.M.N.A. Fareleira, C.M.B.P. Oliveira, W.A. Wakeham, Int. J. Thermophys. 25, 1 (2004)

    ADS  Article  Google Scholar 

  45. A.A.H. Pádua, J.M.N.A. Fareleira, J.C.G. Calado, W.A. Wakeham, Rev. Sci. Instrum. 69, 2392 (1998)

    ADS  Article  Google Scholar 

  46. J.C.F. Diogo, F.J.P. Caetano, J.M.N.A. Fareleira, W.A. Wakeham, C.A.M. Afonso, C.S. Marques, J. Chem. Eng. Data 57, 1015 (2012)

    Article  Google Scholar 

  47. P. Wasserscheid, T. Welton (eds.), Ionic Liquids in Synthesis, 2nd edn. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008)

  48. J. Braunstein, G.D. Robbins, J. Chem. Educ. 48, 52 (1971)

    Article  Google Scholar 

  49. M.E. Kandil, K.N. Marsh, A.R.H. Goodwin, J. Chem. Eng. Data 52, 2382 (2007)

    Article  Google Scholar 

  50. R.A. Robinson, R.H. Stokes, Electrolyte Solutions, 2nd rev. edn. (Butterworths, London, 1959)

  51. K.N. Marsh, J.F. Brennecke, R.D. Chirico, M. Frenkel, A. Heintz, J.W. Magee, C.J. Peters, L.P.N. Rebelo, K.R. Seddon, Pure Appl. Chem. 81, 781 (2009)

    Article  Google Scholar 

  52. R.D. Chirico, V. Diky, J.W. Magee, M. Frenkel, K.N. Marsh, Pure Appl. Chem. 81, 791 (2009)

    Article  Google Scholar 

  53. Z. Moroń, XVII IMEKO World Congress (Rio de Janeiro, 2006), pp. 17–22

  54. B.D. Fitchett, T.N. Knepp, J.C. Conboy, J. Electrochem. Soc. 151, E219 (2004)

    Article  Google Scholar 

  55. H. Tokuda, K. Hayamizu, K. Ishii, M.A.B.H. Susan, K. Hayamizu, M. Watanabe, J. Phys. Chem. B 109, 6103 (2005)

    Article  Google Scholar 

  56. C. Schreiner, S. Zugmann, R. Hartl, H.J. Gores, J. Chem. Eng. Data 52, 2382 (2007)

    Article  Google Scholar 

  57. Ya-H. Yu, A.N. Soriano, M.H. Li, J. Chem. Thermodyn. 41, 103 (2009)

  58. J.C.F. Diogo, F.J.P. Caetano, J.M.N.A. Fareleira, W.A. Wakeham, Fluid Phase Equilib. 353, 76 (2013)

  59. C. Schreiner, S. Zugmann, R. Hartl, H.J. Gores, J. Chem. Eng. Data 55, 1784 (2010)

    Article  Google Scholar 

  60. H. Rodriguez, J.F. Brennecke, J. Chem. Eng. Data 51, 2145 (2006)

    Article  Google Scholar 

  61. P. Walden, Z. Phys. Chem. 55, 207 (1906)

    Google Scholar 

  62. J.J. Golding, D.R. MacFarlane, L. Spiccia, M. Forsyth, B.W. Skelton, A.H. White, Chem. Commun. 1593, (1998)

  63. C.E.S. Bernardes, M.E.M. Piedade, J.N.C. Lopes, J. Phys. Chem. B 115, 2067 (2011)

    Article  Google Scholar 

  64. J.N.C. Lopes, A.A.H. Padua, K. Shimizu, J. Phys. Chem. B 112, 5039 (2008)

    Article  Google Scholar 

  65. A.M. Fernandes, M.A.A. Rocha, M.G. Freire, I.M. Marrucho, J.A.P. Coutinho, L.M.N.B.F. Santos, J. Phys. Chem. B 115, 4033 (2011)

    Google Scholar 

  66. R. Bini, O. Bortolini, C. Chiappe, D. Pieraccini, T. Siciliano, J. Phys. Chem. B 111, 598 (2007)

    Article  Google Scholar 

  67. J. Palgunadi, S.Y. Hong, J.K. Lee, H. Lee, S.D. Lee, M. Cheong, H.S. Kim, J. Phys. Chem. B 115, 1067 (2011)

    Article  Google Scholar 

  68. D.R. MacFarlane, M. Forsyth, E.I. Izgorodina, A.P. Abbott, G. Annat, K. Fraser, Phys. Chem. Chem. Phys. 11, 4962 (2009)

    Article  Google Scholar 

  69. T. Yamaguchi, E. Nakahara, K. Sueda, S. Koda, J. Phys. Chem. B 117, 4121 (2013)

    Article  Google Scholar 

  70. S. Mitsushima, R. Sakamoto, K. Kudo, Y. Takeoka, N. Kamiya, K.-I. Ota, J. New Mater. Electrochem. Syst. 8, 77 (2005)

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Strategic Project PEst-OE/QUI/UIO100/2011 and by the Fundação para a Ciência e a Tecnologia (FCT), Portugal, through the project PTDC/EQU-EPR/103505/2008 and Marta S. Calado is grateful for her grant through this project. João C.F. Diogo is grateful to the FCT for the Ph.D. grant SFRH/BD/66736/2009. The authors wish to thank Fernando J. V. Santos (Centro de Ciências Moleculares e Materiais e Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Portugal) for his valuable advice and discussions on the experimental details.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fernando J. P. Caetano or Zoran P. Visak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 97 KB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Calado, M.S., Diogo, J.C.F., Correia da Mata, J.L. et al. Electrolytic Conductivity of Four Imidazolium-Based Ionic Liquids. Int J Thermophys 34, 1265–1279 (2013). https://doi.org/10.1007/s10765-013-1491-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-013-1491-2

Keywords

  • 1-Ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([C2mim][NTf2])
  • 1-Ethyl-3-methylimidazolium ethyl sulfate ([C2mim][EtSO4])
  • 1-Ethyl-3-methylimidazolium trifluoromethanesulfonate ([C2mim][OTf])
  • 1-Hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([C6mim][NTf2])
  • Electrolytic conductivity
  • Impedance measurements
  • Ionic liquids