Skip to main content
Log in

Chemical Cycle Kinetics: Removing the Limitation of Linearity of a Non-equilibrium Thermodynamic Description

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Chemical cycle kinetics is customarily analyzed by means of the law of mass action which describes how the concentrations of the substances vary with time. The connection of this approach with non-equilibrium thermodynamics (NET) has traditionally been restricted to the linear domain close to equilibrium in which the reaction rates are linear functions of the affinities. We show, by a pertinent formulation of the concept of local equilibrium in the mesoscopic description along the reaction coordinates, that the connection between kinetic and thermodynamic approaches is deeper than thought and holds in the nonlinear domain far from equilibrium, for higher values of the affinity. This new perspective indicates how to overcome the inherent limitation of classical NET in treating cyclic reactions, providing a description of closed and open cycles operating far from equilibrium, in accordance with thermodynamic principles. We propose that the new set of equations are tested and used for data reduction in chemical reaction kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. T.L. Hill, Free Energy Transduction and Biochemical Cycle Kinetics (Dover, New York, 1989)

    Book  Google Scholar 

  2. S. Kjelstrup, J.M. Rubi, D. Bedeaux, Phys. Chem. Chem. Phys. 7, 4009 (2005)

    Article  Google Scholar 

  3. K. Tran, N.P. Smith, D.S. Loiselle, E.J. Crampin, Biophys. J. 96, 2029 (2009)

    Article  ADS  Google Scholar 

  4. J.V. Møller, C. Olesen, A.-M.L. Winther, P. Nissen, Q. Rev. Biophys. 43, 501 (2010)

    Article  Google Scholar 

  5. R.D. Astumian, Biophys. J. 98, 2401 (2010)

    Article  ADS  Google Scholar 

  6. J. Boekhoven, A.M. Brizard, K.N.K. Kowlgi, G.J.M. Koper, R. Eelkema, J.H. van Esch, Angew. Chem. Int. Ed. 49, 4825 (2010)

    Article  Google Scholar 

  7. H. Qian, Annu. Rev. Phys. Chem. 58, 113 (2007)

    Article  ADS  Google Scholar 

  8. J. Ross, P. Mazur, J. Chem. Phys. 35, 19 (1961)

    Article  ADS  Google Scholar 

  9. S.R. de Groot, P. Mazur, Non-Equilibrium Thermodynamics (Dover, New York, 1984)

    Google Scholar 

  10. L. Onsager, Phys. Rev. 37, 405 (1931)

    Article  ADS  Google Scholar 

  11. I. Pagonabarraga, A. Pérez-Madrid, J.M. Rubi, Physica A 237, 205 (1997)

    Article  ADS  Google Scholar 

  12. H.A. Kramers, Physica 7, 284 (1940)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. D. Reguera, J.M. Rubi, J.M.G. Vilar, J. Phys. Chem. B 109, 21502 (2005)

    Article  Google Scholar 

  14. I. Pagonabarraga, J.M. Rubi, Physica A 188, 553 (1992)

    Article  ADS  Google Scholar 

  15. D. Reguera, J.M. Rubi, J. Chem. Phys. 109, 5987 (1998)

    Article  ADS  Google Scholar 

  16. G. Gomila, A. Pérez-Madrid, J.M. Rubi, Physica A 233, 208 (1996)

    Article  ADS  Google Scholar 

  17. D. Bedeaux, S. Kjelstrup, J.M. Rubi, J. Chem. Phys. 119, 9163 (2003)

    Article  ADS  Google Scholar 

  18. J.M. Rubi, S. Kjelstrup, J. Phys. Chem. B 107, 13471 (2003)

    Article  Google Scholar 

  19. J.M. Rubi, D. Bedeaux, S. Kjelstrup, J. Phys. Chem. B 111, 9598 (2007)

    Article  Google Scholar 

  20. A. Lervik, D. Bedeaux, S. Kjelstrup, Eur. Biophys. J. 41, 437 (2012)

    Article  Google Scholar 

  21. D. Bedeaux, I. Pagonabarraga, J.M. Ortiz de Zarate, S. Kjelstrup, J.V. Sengers, Phys. Chem. Chem. Phys. 12, 12780 (2010)

    Article  Google Scholar 

  22. E. Johannessen, S. Kjelstrup, Chem. Eng. Sci. 60, 3347 (2005)

    Article  Google Scholar 

  23. D. Bedeaux, J.M. Ortiz de Zárate, I. Pagonabarraga, J.V. Sengers, S. Kjelstrup, J. Chem. Phys. 135, 124516 (2011)

    Article  ADS  Google Scholar 

  24. H.C. Öttinger, Beyond Equilibrium Thermodynamics (Wiley, Hoboken, NJ, 2005)

    Book  Google Scholar 

  25. L. Xu, H. Shi, H. Feng, J. Wang, J. Chem. Phys. 136, 165102 (2012)

    Article  ADS  Google Scholar 

  26. J.M. Rubi, Sci. Am. 299, 62 (2008)

    Article  ADS  Google Scholar 

  27. S. Kjelstrup, D. Bedeaux, E. Johannessen, J. Gross, Non-Equilibrium Thermodynamics for Engineers (World Scientific, Singapore, 2010)

    Book  Google Scholar 

  28. J.M.G. Vilar, J.M. Rubi, Proc. Natl. Acad. Sci. USA 98, 11081 (2001)

    Article  ADS  Google Scholar 

  29. H. Ge, H. Qian, Phys. Rev. E 81, 051133 (2010)

    Article  ADS  Google Scholar 

  30. H. Qian, D.A. Beard, Biophys. Chem. 114, 213 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Pagonabarraga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubi, J.M., Bedeaux, D., Kjelstrup, S. et al. Chemical Cycle Kinetics: Removing the Limitation of Linearity of a Non-equilibrium Thermodynamic Description. Int J Thermophys 34, 1214–1228 (2013). https://doi.org/10.1007/s10765-013-1484-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-013-1484-1

Keywords

Navigation