International Journal of Thermophysics

, Volume 34, Issue 7, pp 1229–1238 | Cite as

The Lost Work in Dissipative Self-Assembly

  • G. J. M. Koper
  • J. Boekhoven
  • W. E. Hendriksen
  • J. H. van Esch
  • R. Eelkema
  • I. Pagonabarraga
  • J. M. Rubí
  • D. Bedeaux
Article

Abstract

A general thermodynamic analysis is given of dissipative self-assembly (DSA). Subsequently, the analysis is used to quantify the lost work in a recently published chemical realization of DSA (Boekhoven et al., Angew Chem Int Ed 49:4825, 2010) where a formation reaction produces the monomers that subsequently self-assemble and are finally annihilated by means of a destruction reaction. For this example, the work lost in self-assembly itself is found to be negligibly small compared to the work lost in the reactions driving the non-spontaneous formation reaction and the kinetically hindered destruction reaction.

Keywords

Lost work Non-equilibrium thermodynamics Self-assembly 

References

  1. 1.
    T. Hill, Free Energy Transduction And Biochemical Cycle Kinetics, Dover Books on Chemistry Series (Dover, New York, 2004), http://books.google.nl/books?id=AqVsAAAACAAJ. Accessed 22 May 2013
  2. 2.
    J. Israelachvili, Intermolecular and Surface Forces, rev. 3rd edn. (Academic Press, London, 2011), http://books.google.nl/books?id=vgyBJbtNOcoC. Accessed 22 May 2013
  3. 3.
    C.B. Minkenberg, B. Homan, J. Boekhoven, B. Norder, G.J.M. Koper, R. Eelkema, J.H. van Esch, Langmuir 28, 13570 (2012)Google Scholar
  4. 4.
    A. Bejan, Advanced Engineering Thermodynamics (Wiley, Hoboken, NJ, 2006), http://books.google.nl/books?id=LWyqQgAACAAJ. Accessed 22 May 2013
  5. 5.
    M. Fialkowski, K.J.M. Bishop, R. Klajn, S.K. Smoukov, C.J. Campbell, B.A. Grzybowski, J. Phys. Chem. B 110, 2482 (2006)Google Scholar
  6. 6.
    J. Boekhoven, A.M. Brizard, K.N.K. Kowlgi, G.J.M. Koper, R. Eelkema, J.H. van Esch, Angew. Chem. Int. Ed. 49, 4825 (2010)Google Scholar
  7. 7.
    J. Boekhoven, Multicomponent and Dissipative Self-Assembly Approaches, Ph.D. Thesis (Delft University of Technology, Netherlands, 2012)Google Scholar
  8. 8.
    D. Reguera, J.M. Rubi, J.M.G. Vilar, J. Phys. Chem. B 109, 21502 (2005)Google Scholar
  9. 9.
    S. De Groot, P. Mazur, Non-Equilibrium Thermodynamics, Dover Books on Physics Series (Dover, New York, 1962), http://books.google.nl/books?id=mfFyG9jfaMYC. Accessed 22 May 2013
  10. 10.
    W. Yu, K. Hidajat, A. Ray, Appl. Catal. A Gen. 260, 191 (2004)Google Scholar
  11. 11.
    J. Guthrie, Can. J. Chem. 56, 2342 (1978)Google Scholar
  12. 12.
    D.R. Lide (ed.), CRC Handbook of Chemistry and Physics, 74th edn. (CRC Press, Boca Raton, FL, 1993), http://books.google.nl/books?id=q2qJId5TKOkC. Accessed 22 May 2013
  13. 13.
    I. Pagonabarraga, A. Perez-Madrid, J.M. Rubi, Phys. A 237, 205 (1997)Google Scholar
  14. 14.
    H. Kramers, Physica 7, 284 (1940)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • G. J. M. Koper
    • 1
  • J. Boekhoven
    • 1
    • 2
  • W. E. Hendriksen
    • 1
  • J. H. van Esch
    • 1
  • R. Eelkema
    • 1
  • I. Pagonabarraga
    • 3
  • J. M. Rubí
    • 3
  • D. Bedeaux
    • 4
    • 5
  1. 1.Department of Chemical EngineeringDelft University of TechnologyDelftThe Netherlands
  2. 2.Institute for BioNanotechnology in Medicine, Northwestern UniversityChicagoUSA
  3. 3.Departament de Fisica FonamentalUniversitat de BarcelonaBarcelonaSpain
  4. 4.Process & Energy LaboratoryDelft University of TechnologyDelftThe Netherlands
  5. 5.Department of ChemistryNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations