Skip to main content

Advertisement

Log in

Electronic Structure and Thermodynamic Properties of the Cubic Antiperovskite Compound InNCe\(_{3}\) via First-Principles Calculations

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Elastic, thermodynamic, electronic, and magnetic properties in the cubic antiperovskite InNCe\(_{3}\) compound are derived from the full-potential linear muffin-tin orbital method. From the computed elastic constants, theoretical values of Young’s modulus, the shear modulus, Poisson’s ratio, Lamé’s coefficients, sound velocities, and the Debye temperature are evaluated. Analysis of the ratio between the bulk modulus and the shear modulus shows that InNCe\(_{3}\) is brittle in nature. The variations of elastic constants with pressure indicate that this compound possesses higher mechanical stability in the pressure range from 0 to 40 GPa. The electronic and magnetic properties of this compound are calculated by adding the Coulomb interaction \(U\) to improve the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Haschke, H. Nowotny, F. Benesovsky, Monatsh. Chem. 98, 2157 (1967)

    Article  Google Scholar 

  2. B.V. Beznosikov, J. Struct. Chem. 44, 885 (2003)

    Article  Google Scholar 

  3. F. Gäbler, W. Schnelle, A. Senyshyn, R. Niewa, Solid State Sci. 10, 1910 (2008)

    Article  ADS  Google Scholar 

  4. M. Kirchner, W. Schnelle, F.R. Wagner, R. Niewa, Solid State Sci. 5, 1247 (2003)

    Article  ADS  Google Scholar 

  5. R. Niewa, H. Jacobs, Chem. Rev. 96, 2053 (1996)

    Article  Google Scholar 

  6. R. Kniep, Pure Appl. Chem. 69, 185 (1997)

    Article  Google Scholar 

  7. R. Niewa, F.J. DiSalvo, Chem. Mater. 10, 2733 (1998)

    Article  Google Scholar 

  8. S. Savrasov, D. Savrasov, Phys. Rev. B 46, 12181 (1992)

    Article  ADS  Google Scholar 

  9. S.Y. Savrasov, Phys. Rev. B 54, 16470 (1996)

    Article  ADS  Google Scholar 

  10. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  11. W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965)

    MathSciNet  ADS  Google Scholar 

  12. J.P. Perdew, Y. Wang, Phys. Rev. B 46, 12947 (1992)

    Article  ADS  Google Scholar 

  13. P. Blochl, O. Jepsen, O.K. Andersen, Phys. Rev. B 49, 16223 (1994)

    Article  ADS  Google Scholar 

  14. M.A. Blanco, E. Francisco, V. Luaña, Comput. Phys. Commun. 158, 7 (2004)

    Article  ADS  Google Scholar 

  15. M. Flórez, J.M. Recio, E. Francisco, M.A. Blanco, A. Martín Pendás, Phys. Rev. B 66, 44112 (2002)

    Article  Google Scholar 

  16. M.A. Blanco, A. Martín Pendás, E. Francisco, J.M. Recio, R. Franco, J. Mol. Struct. (THEOCHEM) 368, 45 (1996)

    Article  Google Scholar 

  17. R. Hill, Proc. Phys. Soc. Lond. A 65, 49 (1952)

    Article  Google Scholar 

  18. O.L. Anderson, Equation of State of Solids for Geophysics and Ceramic Science (Oxford University Press, Oxford, 1995)

    Google Scholar 

  19. M.J. Mehl, Phys. Rev. B 47, 2493 (1993)

    Article  ADS  Google Scholar 

  20. L. Kleinman, Phys. Rev. 128, 2614 (1962)

    Article  ADS  Google Scholar 

  21. Q. Chen, B. Sundman, Acta Mater. 49, 947 (2001)

    Article  Google Scholar 

  22. D.C. Wallace, Thermodynamics of Crystals (Wiley, New York, 1972)

    Google Scholar 

  23. S.F. Pugh, Philos. Mag. 45, 823–843 (1954)

    Google Scholar 

  24. G. Vatheeswaran, V. Kanchana, R.S. Kumar, A.L. Cornelius, M.F. Nicol, A. Svane, A. Delin, B. Johansson, Phys. Rev. B 76, 014107 (2007)

    Article  ADS  Google Scholar 

  25. I.N. Frantsevich, F.F. Voronov, S.K. Bokuta, in Elastic Constant and Elastic Moduli of Metals and Insulator Handbook, ed. by I.N. Frantsevich (Naukova Dumka, Kiev, 1983), pp. 60–180

  26. J.R. Christman, Fundamentals of Solid State Physics (Wiley, New York, 1988)

    Google Scholar 

  27. B. Mayer, H. Anton, E. Bott, M. Methfessel, J. Stricht, P.C. Schmidt, Intermettalics 11, 23 (2003)

    Article  Google Scholar 

  28. O.L. Anderson, J. Phys. Chem. Solids 24, 909 (1963)

    Article  ADS  Google Scholar 

  29. E. Schreibe, O.L. Anderson, N. Soga, Elastic Constants and their Measurements (McGraw-Hill, New York, 1973)

    Google Scholar 

  30. J.-T. Zhao, Z.-C. Dong, J.T. Vaughey, J.E. Ostenson, J.D. Corbett, J. Alloys Compd. 230, 1 (1995)

    Article  Google Scholar 

Download references

Acknowledgments

For author D. Rached, this study was supported by the Algerian national Project PNR (Céramiques Piézoélectriques Propriétés et Applications). For author Rabah Khenata, this study was supported from the vice-rectorate for graduate studies and scientific research at King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Rached.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bettahar, N., Nasri, D., Benalia, S. et al. Electronic Structure and Thermodynamic Properties of the Cubic Antiperovskite Compound InNCe\(_{3}\) via First-Principles Calculations. Int J Thermophys 34, 434–449 (2013). https://doi.org/10.1007/s10765-013-1434-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-013-1434-y

Keywords

Navigation