Skip to main content

Advertisement

Log in

Uniform and Non-uniform Thermoelement Subject to Lateral Heat Convection

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A general energy equation of quasi-one-dimensional heat flow in a longitudinal thermoelement (TE) of a curved side that is subjected to an electric field and convection heat transfer on the curved surface is developed. The energy equation is solved for the temperature distribution in two cases; uniform cross-section TE and non-uniform cross-section TE. Analytical solutions for a uniform cross-section TE with uniform electrical and thermophysical properties are obtained, whereas numerical solutions are provided for a non-uniform cross-section TE. Two parameters playing a vital role in the thermal performance of the TE are identified: the heat resistance ratio (HRR) and the energy growing ratio (EGR). The HRR represents the ratio of the longitudinal conduction maximum thermal resistance to the lateral convection maximum thermal resistance. The EGR represents the ratio of Joule’s electrical heating to Fourier’s heat conduction. The effects of varying these two parameters, as well as the TE geometry, have been thoroughly investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.H. Hameed, R. Kafafy, A Thermoelectrically-Controlled MEMS-based Nozzle, filed to the Malaysian Patent Office, Malaysia, 2010, PI2010001714

  2. Y.G. Gurevich, G.N. Logvinov, Semicond. Sci. Tech. 20, R57 (2005)

    Article  ADS  Google Scholar 

  3. I. Lashkevych, C. Cortes, Y.G. Gurevich, J. Appl. Phys. 105, 053706 (2009)

    Article  ADS  Google Scholar 

  4. Y.G. Gurevich, G.N. Logvinov, Revistamexicana de física 53 (2009)

  5. G.N. Logvinov, J.E. Velzquez, I.M. Lashkevych, Y.G. Gurevich, Appl. Phys. Lett. 89, 092118 (2006)

    Article  ADS  Google Scholar 

  6. D. Mitrani, J. Salazar, A. Turó, M.J. García, J.A. Chávez, Microelectron. J. 40, 1406 (2009)

    Article  Google Scholar 

  7. A.H. Shapiro, The Dynamics and Thermodynamics of Compressible Fluid Flow (Wiley, New York, 1953)

    Google Scholar 

  8. W.F. Louisos, D.L. Hitt, J. Spacecraft Rockets 45, 706 (2008)

    Article  ADS  Google Scholar 

  9. A.H. Hameed, R. Kafafy, Proceedings of International Conference on Mechatronics (ICOM’08) (Kuala Lumpur, Malaysia, 2008)

    Google Scholar 

  10. M.J. Huang, R.H. Yen, A.B. Wang, Int. J. Heat Mass Transf. 48, 413 (2005)

    Article  MATH  Google Scholar 

  11. J.E. Parrott, Solid-State Electron. 1, 135 (1960)

    Article  ADS  Google Scholar 

  12. C.N. Rollinger, J.E. Sunderland, Solid-State Electron. 3, 268 (1961)

    Article  ADS  Google Scholar 

  13. C.N. Rollinger, J.E. Sunderland, Solid-State Electron. 6, 47 (1963)

    Article  ADS  Google Scholar 

  14. D. Mitrani, J. Salazar, A. Turo, M.J. García, J.A. Chávez, Microelectron. J. 40, 1398 (2009)

    Article  Google Scholar 

  15. W. Seifert, M. Ueltzen, C. Strumpel, W. Heiliger, E. Muller, in Proceedings ICT 2001, 20th International Conference Thermoelectrics, Beijing, 2001, p. 439

  16. M. Hodes, IEEE Trans. Compon. Pack. Tech. 28, 12 (2005)

    Google Scholar 

  17. M. Hodes, in Thermal and Thermomechanical Phenomena in Electronic Systems, ITHERM ’04. The Ninth Intersociety Conference, Las Vegas, 2004, p. 242

  18. L.J. Ybarrondo, J.E. Sunderland, Solid-State Electron. 5, 143 (1962)

    Article  ADS  Google Scholar 

  19. A. Ashcheulov, V. Okhrem, E. Okhrem, Semiconductors 37, 1350 (2003)

    Article  ADS  Google Scholar 

  20. P. Balachandran, Fundamentals of Compressible Fluid Dynamics (Prentice-Hall of India, New Delhi, 2007)

    Google Scholar 

  21. R. Kafafy, A.H. Hameed, Defect Diffus. Forum 312, 782 (2011)

    Google Scholar 

Download references

Acknowledgments

This research is supported by the International Islamic University Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amar Hasan Hameed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hameed, A.H., Kafafy, R. Uniform and Non-uniform Thermoelement Subject to Lateral Heat Convection. Int J Thermophys 34, 538–552 (2013). https://doi.org/10.1007/s10765-013-1426-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-013-1426-y

Keywords

Navigation