Skip to main content
Log in

Study of (Solid–Liquid) Phase Equilibria for Mixtures of Energetic Material Stabilizers and Prediction for Their Subsequent Performance

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Solid-liquid equilibria for three binary mixtures of 2-nitrodiphenylamine (1) + diphenylamine (2), ethyl centralite (1) + N-ethyl-4-nitro-N-nitrosoaniline (2), and 2,2\(^{\prime }\)-dinitrodiphenylamine (1) + N-ethyl-4-nitro-N-nitrosoaniline (2) were measured using a differential scanning calorimeter. Simple eutectic behaviors for these systems were observed. The experimental results were correlated by means of original and modified NRTL, Wilson, and UNIQUAC equations. The root–mean–square deviations of the solubility temperatures for all measured data vary from 0.63 K to 3.73 K and depend on the particular model used. The best solubility correlation was obtained with the UNIQUAC model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. Ritter, S. Braun, M. Kaiser, C. Becher, Propellants Explos. Pyrotech. 33, 203 (2008)

    Article  Google Scholar 

  2. L.S. Lussier, E. Berger, H. Gapnon, Propellants Explos. Pyrotech. 31, 253 (2006)

    Article  Google Scholar 

  3. L.S. Lussier, H. Gagnon, in Development of Modern Methods for Determination of Stabilizers in Propellants (Defense Research Establishment, Valcartier, Quebec, DREV R-9511, 1996)

  4. A. Mekki, K. Khimeche, A. Dahmani, J. Chem. Thermodyn. 42, 1050 (2010)

    Article  Google Scholar 

  5. K. Khimeche, A. Dahmani, J. Therm. Anal. Calorim. 84, 47 (2006)

    Article  Google Scholar 

  6. K. Khimeche, A. Dahmani, J. Chem. Thermodyn. 38, 1192 (2006)

    Article  Google Scholar 

  7. K. Khimeche, Y. Boumrah, M. Benziane, A. Dahmani, Thermochim. Acta 444, 165 (2006)

    Article  Google Scholar 

  8. M. Mular, A. Vom Berg, Technical Memorandum WSRL-0294-TM (Weapons Systems Research Laboratory, Adelaide, South Australia, 1982)

  9. N.J. Curtis, Technical Report WSRL-0563-TR (Weapons Systems Research Laboratory, Salisbury, South Australia, 1987)

  10. M.S. Elliot, F.J. Smith, A.M. Fraser, Propellants Explos. Pyrotech. 25, 31 (2000)

    Article  Google Scholar 

  11. N.J. Curtis, Technical Report WSRL-0436-TR (Weapons Systems Research Laboratory, Salisbury, South Australia, 1986)

  12. V. Chevallier, D. Petitjean, V.R. Meray, M. Dirand, Polymer 40, 5953 (1999)

    Article  Google Scholar 

  13. Y.P. Chen, M. Tang, J.C. Kuo, Fluid Phase Equilib. 232, 182 (2005)

    Article  Google Scholar 

  14. D. Mackay, W.Y. Shiu, K. Ma, S.C. Lee, Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, 2nd edn. (Taylor and Francis, New York, 2006)

    Google Scholar 

  15. R. Meyer, J. Köler, A. Homburg, Explosives, 6th edn. (Wiley, Weinheim, 2007)

    Book  Google Scholar 

  16. E.J. Baum, Chemical Property Estimation: Theory and Application (CRC Press, Boca Raton, FL, 2000)

  17. J. Quinchon, J. Tranchant, Les poudres, propergols et explosifs, vol. 2 (Technique et Documentation, Lavoisier, France, 1984)

    Google Scholar 

  18. D.R. Lide, CRC Handbook of Chemistry and Physics, 89th edn. (CRC Press, Boca Raton, FL, 2008)

  19. W.E. Acree Jr, Thermochim. Acta 189, 37 (1991)

    Article  Google Scholar 

  20. C.R. Witschonke, Anal. Chem. 26, 562 (1954)

    Article  Google Scholar 

  21. U. Domanska, J.A. Gonzalez, Fluid Phase Equilib. 123, 167 (1996)

    Google Scholar 

  22. U. Domanska, J. Lachwa, J. Chem. Thermodyn. 37, 692 (2005)

    Article  Google Scholar 

  23. R.N. Rai, U.S. Rai, Thermochim. Acta 363, 23 (2000)

    Article  Google Scholar 

  24. J.M. Praunitz, R.N. Lichtenthaler, E.G. Azevedo, Molecular Thermodynamics of Fluid Phase Equilibria, 2nd edn. (Prentice-Hall, Englewood Cliffs, NJ, 1986)

  25. J.A.P. Coutinho, S.I. Andersen, E.H. Stenby, Fluid Phase Equilib. 117, 138 (1996)

    Article  Google Scholar 

  26. U. Domanska, F.R. Groves, E. Mc Laughlin, J. Chem. Eng. Data 38, 88 (1993)

    Article  Google Scholar 

  27. C. Pan, M. Radosz, Fluid Phase Equilib. 155, 57 (1999)

    Article  Google Scholar 

  28. R.V. Orye, J.M. Prausnitz, Ind. Eng. Chem. 57, 18 (1965)

    Article  Google Scholar 

  29. M. Mukhopadhyay, K. Sahasranaman, Ind. Eng. Chem. Process Des. Dev. 21, 632 (1982)

    Article  Google Scholar 

  30. J. Nagata, Y. Nakamiya, K. Katoh, J. Koyabu, Thermochim. Acta 45, 153 (1981)

    Article  Google Scholar 

  31. J.A. Nelder, R. Mead, Comput. J. 7, 308 (1965)

    Article  MATH  Google Scholar 

  32. T. Hofman, J. Nagata, Fluid Phase Equilib. 25, 113 (1986)

    Article  Google Scholar 

  33. J.P. Monfort, M.D.L. Rojas, Fluid Phase Equilib. 2, 181 (1978)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamel Khimeche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trache, D., Khimeche, K. & Dahmani, A. Study of (Solid–Liquid) Phase Equilibria for Mixtures of Energetic Material Stabilizers and Prediction for Their Subsequent Performance. Int J Thermophys 34, 226–239 (2013). https://doi.org/10.1007/s10765-013-1404-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-013-1404-4

Keywords

Navigation