International Journal of Thermophysics

, Volume 34, Issue 4, pp 588–596 | Cite as

Photophysical and Thermodynamic Parameters of Hematoporphyrin in Solutions and Monolayers

Open Access


To achieve better understanding of anticancer photosensitizing efficiency and cellular membrane location ability, a study of hematoporphyrin and phospholipids in a dye and in a mixture of a dye and lipids in volumetric and 2D systems was performed. By means of steady-state absorption, fluorescence, and time-resolved optoacoustic spectroscopy, the fluorescence quantum yield, the fraction of absorbed energy converted into heat on a subnanosecond timescale, the efficiency of the dye’s triplet-state population, and singlet oxygen generation characteristics of the dye were determined in chosen organic solvents. On the basis of the isotherms of hematoporphyrin and its mixture with phospholipid in Langmuir monolayers, the excess area, excess Gibbs energy, and compression modulus were estimated and the molecular interactions in the model systems investigated were discussed.


Hematoporphyrin Monolayer Optical and photothermal spectroscopy 



This study was supported by Poznan University of Technology (DS/2012 (JŁ, AD) and DS/MK/2012 (MK)). The authors thank Dr. eng. B. Jurzyk for her help in the LIOAS experiment performance.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.


  1. 1.
    Caseli L., Vinhado F.S., Iamamoto Y., Zaniquelli M.E.D.: Colloids Surf. A 229, 169 (2003)CrossRefGoogle Scholar
  2. 2.
    Martin M.T., Prieto I., Camacho L., Mobius D.: Langmuir 12, 26 (1996)Google Scholar
  3. 3.
    DeRosa M.C., Crutchley R.J.: Coord. Chem. Rev. 233–234, 351 (2002)CrossRefGoogle Scholar
  4. 4.
    Lomonosov M.L.: Khim.-Farm. Zh. 11, 2 (1977)Google Scholar
  5. 5.
    Smith G.J.: Photochem. Photobiol. 41, 2 (1985)CrossRefGoogle Scholar
  6. 6.
    Tanielian C., Schweitzer C., Mechin R., Wolff C.: Free Radical Biol. Med. 30, 2 (2001)CrossRefGoogle Scholar
  7. 7.
    Moreira L.M., dos Santos F.V., Lyon J.P., Maftoum-Costa M., Pacheco-Soares C., Soaresda Silva N.: Aust. J. Chem. 61, 10 (2008)CrossRefGoogle Scholar
  8. 8.
    Bonneau S., Morliere P., Brault D.: Biochem. Pharmacol. 68, 7 (2004)CrossRefGoogle Scholar
  9. 9.
    Korínek M., Dědic D., Molnár A., Svoboda A., Hála J.: J. Mol. Struct. 744–747, 727 (2005)CrossRefGoogle Scholar
  10. 10.
    Ramos A.P., Pavani C., Iamamoto Y., Zaniquelli M.E.: J. Colloid Interface Sci. 350, 1 (2010)CrossRefGoogle Scholar
  11. 11.
    Desroches M.C., Kasselouri A., Meyniel M., Fontaine P., Goldmann M., Prognon P., Maillard P., Rosilio V.: Langmuir 20, 26 (2004)CrossRefGoogle Scholar
  12. 12.
    Olejarz B., Bursa B., Szyperska I., Ion R.-M., Dudkowiak A.: Int. J. Thermophys. 31, 163 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Sandez Macho M.I., Gil Gonzalez A., Suarez Varela A.: J. Colloid Interface Sci. 235, 241 (2001)CrossRefGoogle Scholar
  14. 14.
    Reddi E., Jori G.: Rev. Chem. Intermed. 10, 241 (1988)CrossRefGoogle Scholar
  15. 15.
    Bryce-Smith D.: Photochemistry, vol. 2, Specialist Periodical Report. Royal Society of Chemistry, London (1971)Google Scholar
  16. 16.
    Redmond R.W., Gamlin J.N.: Photochem. Photobiol. 70, 391 (1999)Google Scholar
  17. 17.
    Mathai S., Smith T.A., Ghiggino K.P.: Photochem. Photobiol. Sci. 6, 995 (2007)CrossRefGoogle Scholar
  18. 18.
    Ma G., Allen H.C.: Langmuir 22, 5341 (2006)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Faculty of Technical PhysicsPoznan University of TechnologyPoznanPoland

Personalised recommendations