Skip to main content
Log in

Improving the Design of Greek Hollow Clay Bricks

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The hollow clay brick is the typical building unit that is employed not only over the whole Greece but also in many other Mediterranean countries. Nevertheless, its design is completely empirical. In this study, the design of the hollow clay brick is analyzed by employing a finite element package. To carry out this analysis, the thermal conductivity of the solid clay is measured by the transient hot-wire technique. As a consequence of the analysis, an improvement of 24 % in the design of the hollow clay brick is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greek National Gazette (GNG) B’ 1387 (2010)

  2. Morales M.P., Juárez M.C., Muñoz P., Gómez J.A.: Energy Build. 43, 2494 (2011)

    Article  Google Scholar 

  3. Morales M.P., Juárez M.C., López-Ochoa L.M., Doménech J.: Appl. Therm. Eng. 31, 2063 (2011)

    Article  Google Scholar 

  4. Bouchair A.: Build. Environ. 43, 1603 (2008)

    Article  Google Scholar 

  5. Li L.P., Wu Z.G., Li Z.Y., He Y.L., Tao W.Q.: Int. J. Heat Mass Transf. 51, 3669 (2008)

    Article  MATH  Google Scholar 

  6. Li L.P., Wu Z.G., He Y.L., Lauriat G., Tao W.Q.: Energy Build. 40, 1790 (2008)

    Article  Google Scholar 

  7. Arsenovic M., Lalic Z., Radojevic Z.: Int. J. Mod. Manuf. Technol. 2, 15 (2010)

    Google Scholar 

  8. Del Coz Díaz J.J., Nieto P.J.G., Sierra J.L.S., Biempica C.B.: Int. J. Heat Mass Transf. 51, 1530 (2008)

    Article  MATH  Google Scholar 

  9. Del Coz Díaz J.J., García Nieto P.J., Suárez Sierra J.L., Peñuelas Sánchez I.: Appl. Therm. Eng. 28, 1090 (2008)

    Article  Google Scholar 

  10. Del Coz Díaz J.J., García Nieto P.J., Rodríguez A.M., Martínez-Luengas A.L., Biempica C.B.: Appl. Therm. Eng. 26, 777 (2006)

    Article  Google Scholar 

  11. Del Coz Díaz J.J., García Nieto P.J., Betegón Biempica C., Prendes Gero M.B.: Appl. Therm. Eng. 27, 1445 (2007)

    Article  Google Scholar 

  12. Yang D., Sun W., Liu Z., Zheng K.: Cem. Concr. Res. 33, 1357 (2003)

    Article  Google Scholar 

  13. Sun J., Fang L., Han J.: Int. J. Heat Mass Transf. 53, 5509 (2010)

    Article  MATH  Google Scholar 

  14. Sun J., Fang L.: Int. J. Heat Mass Transf. 52, 5598 (2009)

    Article  MATH  Google Scholar 

  15. Al-Hadhrami L.M., Ahmad A.: Appl. Therm. Eng. 29, 1123 (2009)

    Article  Google Scholar 

  16. Ahmad A., Al-Hadhrami L.M.: Therm. Sci. 13, 221 (2009)

    Article  Google Scholar 

  17. Del Coz Díaz J.J., García Nieto P.J., Domínguez Hernández J., Álvarez Rabanal F.P.: Appl. Therm. Eng. 30, 2822 (2010)

    Article  Google Scholar 

  18. Suleiman B.M.: Appl. Therm. Eng. 31, 1923 (2011)

    Article  Google Scholar 

  19. Vivancos J.L., Soto J., Perez I., Ros-Lis J.V., Martínez-Máñez R.: Build. Environ. 44, 1047 (2009)

    Article  Google Scholar 

  20. Tavil A.: Constr. Build. Mater. 18, 111 (2004)

    Article  Google Scholar 

  21. Sala J.M., Urresti A., Martín K., Flores I., Apaolaza A.: Energy Build. 40, 1513 (2008)

    Article  Google Scholar 

  22. Assael M.J., Antoniadis K.D., Wakeham W.A.: Int. J. Thermophys. 31, 1051 (2010)

    Article  ADS  Google Scholar 

  23. Assael M.J., Dix M., Gialou K., Vozar L., Wakeham W.A.: Int. J. Thermophys. 23, 615 (2002)

    Article  Google Scholar 

  24. Assael M.J., Antoniadis K.D., Kakosimos K.E., Metaxa I.N.: Int. J. Thermophys. 29, 445 (2008)

    Article  ADS  Google Scholar 

  25. Assael M.J., Gialou K., Kakosimos K., Metaxa I.: Int. J. Thermophys. 25, 397 (2004)

    Article  ADS  Google Scholar 

  26. Assael M.J., Gialou K.: Int. J. Thermophys. 24, 1145 (2003)

    Article  Google Scholar 

  27. Assael M.J., Gialou K.: Int. J. Thermophys. 24, 667 (2003)

    Article  Google Scholar 

  28. Assael M.J., Antoniadis K.D., Tzetzis D.: Compos. Sci. Technol. 68, 3178 (2008)

    Article  Google Scholar 

  29. Ramires M.L.V., Nieto de Castro C.A., Perkins R.A., Nagasaka Y., Nagashima A., Assael M.J., Wakeham W.A.: J. Phys. Chem. Ref. Data 29, 133 (2000)

    Article  ADS  Google Scholar 

  30. Kashiwagi H., Hashimoto T., Tanaka Y., Kubota H., Makita T.: Int. J. Thermophys. 3, 201 (1982)

    Article  ADS  Google Scholar 

  31. Muringer M.J.P., Trappeniers N.J., Biswas S.N.: Phys. Chem. Liq. 14, 273 (1985)

    Article  Google Scholar 

  32. Assael M.J., Botsios S., Chamizidis E., Cialou K., Gkontosidou E., Kakosimos K.: Ziegelind. Int. 4, 32 (2005)

    Google Scholar 

  33. E.W. Lemmon, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.0 (National Institute of Standards and Technology, Gaithersburg, MD, 2010)

  34. 2011 ASHRAE Handbook (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Atlanta, 2011)

  35. De Gracia A., Castell A., Medrano M., Cabeza L.F.: Energy Convers. Manage. 52, 2495 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos D. Antoniadis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antoniadis, K.D., Assael, M.J., Tsiglifisi, C.A. et al. Improving the Design of Greek Hollow Clay Bricks. Int J Thermophys 33, 2274–2290 (2012). https://doi.org/10.1007/s10765-012-1294-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-012-1294-x

Keywords

Navigation