Skip to main content
Log in

Thermal Decomposition of Molecular Materials \({\{{\rm N}(n{-}{\rm C}_{4}{\rm H}_{9})_{4}[{\rm M}^{\rm II} {\rm Fe}^{\rm III}({\rm C}_{2} {\rm O}_{4})_{3}]\}_{\infty},\,{\rm M}^{\rm II} = {\rm Zn},\, {\rm Co},\, {\rm Fe}}\)

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Thermal decomposition of oxalate-based molecular precursors, namely \({\{{\rm N}(n{-} {\rm C}_{4} {\rm H}_{9})_{4}[{\rm Zn}^{\rm II}{\rm Fe}^{\rm III}({\rm C}_{2} {\rm O}_{4})_{3}]\}_{\infty}, \{{\rm N}(n{-}{\rm C}_{4}{\rm H}_{9})_{4}[{\rm Co}^{\rm II}{\rm Fe}^{\rm III}({\rm C}_{2}{\rm O}_{4})_{3}]\}_{\infty}}\) , and \({\{{\rm N}(n{-}{\rm C}_{4} {\rm H}_{9})_{4}[{\rm Fe}^{\rm II}{\rm Fe}^{\rm III}({\rm C}_{2}{\rm O}_{4})_{3}]\}_{\infty}}\) , abbreviated as BuZnFe, BuCoFe, and BuFeFe, respectively, are studied using thermogravimetry (TG) in the temperature range from ~300 K to ~675 K at multiple heating rates. This study also deals with how the thermal decomposition of the complexes proceed stepwise through a series of intermediate reactions. The effect of the divalent metal MII on the nature of thermal decomposition of the complexes, reflected in their TG profiles in terms of number of steps involved, is reported in this study. The temperature range of thermal decomposition steps for BuZnFe, BuCoFe, and BuFeFe with the same heating rates are studied systematically. Two different isoconversional methods, namely an improved iterative method and a model-free method are employed to calculate the kinetic parameters, and thus the most probable reaction mechanism of thermal decomposition is determined. Based on kinetic parameters, the important thermodynamic parameters such as the changes of entropy, enthalpy, and Gibbs free energy are estimated for the activated complex formation from the precursors. Considering the mass loss during the different thermal decomposition steps of BuZnFe, BuCoFe, and BuFeFe, observed in the thermogravimetry profiles, the overall reactions of the thermal decompositions are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller, J.S., Drillon, M. (eds): From Molecules to Materials IV. Wiley, Weinheim (2003)

    Google Scholar 

  2. Bhattacharjee A., Reiman S., Ksenofontov V., Gütlich P.: J. Phys. Condens. Matter 15, 5103 (2003)

    Article  ADS  Google Scholar 

  3. Neo K.E., Ong Y.Y., Huynh H.V., Hor T.S.A.: J. Mater. Chem. 17, 1002 (2007)

    Article  Google Scholar 

  4. A. Bhattacharjee, D. Roy, M. Roy, J. Therm. Anal. Calorim. 109, 1423 (2012)

    Google Scholar 

  5. Bhattacharjee A., Roy D., Roy M., Chakraborty S., De A., Kusz J., Hofmeister W.: J. Alloy Compd. 503, 449 (2010)

    Article  Google Scholar 

  6. Gao Z., Nakada M., Amasaki I.: Thermochim. Acta 369, 137 (2001)

    Article  Google Scholar 

  7. Vyazovkin S., Dollimore D.: J. Chem. Inf. Comput. Sci. 36, 42 (1996)

    Article  Google Scholar 

  8. Liqing L., Donghua C.: J. Therm. Anal. Calorim. 78, 283 (2004)

    Article  Google Scholar 

  9. Vlaev L.T., Nikolova M.M., Gospodinov G.G.: J. Solid State Chem. 177, 2663 (2004)

    Article  ADS  Google Scholar 

  10. Ōkawa H., Matsumoto N., Tamaki H., Kida S., Ohba M.: Mol. Cryst. Liq. Cryst. 233, 257 (1993)

    Article  Google Scholar 

  11. S. Vyazovkin, in Recent Advances, Techniques and Applications, ed. by M.E. Brown, P.K. Gallagher, vol. 5 (Elsevier, Amsterdam, 2008), p. 503

  12. Coats A.W., Redfern J.P.: Nature 201, 68 (1964)

    Article  ADS  Google Scholar 

  13. Farjas J., Roura P.: J. Therm. Anal. Calorim. 105, 767 (2011)

    Article  Google Scholar 

  14. Šesták J.: Thermophysical Properties of Solids, Their Measurements and Theoretical Analysis, vol. 12D. Elsevier, Amsterdam (1984)

    Google Scholar 

  15. Senum G.I., Yang R.T.: J. Therm. Anal. Calorim. 11, 445 (1977)

    Article  Google Scholar 

  16. Vlaev L., Nedelchev N., Gyurova K., Zagorcheva M.: J. Anal. Appl. Pyrolysis 81, 253 (2008)

    Article  Google Scholar 

  17. Cai J., Yao F., Yi W., He F.: AIChE J. 52, 1554 (2006)

    Article  Google Scholar 

  18. Málek J.: Thermochim. Acta 200, 257 (1992)

    Article  Google Scholar 

  19. Janković B., Mentus S., Janković M.: J. Phys. Chem. Solids 69, 1923 (2008)

    Article  ADS  Google Scholar 

  20. Young D.: Decomposition of Solids. Pergamon Press, Oxford (1966)

    Google Scholar 

  21. Cordes H.M.: J. Phys. Chem. 72, 2185 (1968)

    Article  Google Scholar 

  22. Šesták J.: Thermodynamical Properties of Solids. Academia, Prague (1984)

    Google Scholar 

  23. Criado J.M., Pérez-Maqueda L.A., Sánchez-Jiménez P.E.: J. Therm. Anal. Calorim. 82, 671 (2005)

    Article  Google Scholar 

  24. A. Bhattacharjee, D. Roy, M. Roy, M. Zubko, J. Kusz (unpublished data)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashis Bhattacharjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharjee, A., Roy, D. & Roy, M. Thermal Decomposition of Molecular Materials \({\{{\rm N}(n{-}{\rm C}_{4}{\rm H}_{9})_{4}[{\rm M}^{\rm II} {\rm Fe}^{\rm III}({\rm C}_{2} {\rm O}_{4})_{3}]\}_{\infty},\,{\rm M}^{\rm II} = {\rm Zn},\, {\rm Co},\, {\rm Fe}}\) . Int J Thermophys 33, 2351–2365 (2012). https://doi.org/10.1007/s10765-012-1293-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-012-1293-y

Keywords

Navigation