Skip to main content
Log in

An Analytical Study on a Model Describing Heat Conduction in Rectangular Radial Fin with Temperature-Dependent Thermal Conductivity

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The coupling of the homotopy perturbation method (HPM) and the variational iteration method (VIM) is a strong technique for solving higher dimensional initial boundary value problems. In this article, after a brief explanation of the mentioned method, the coupled techniques are applied to one-dimensional heat transfer in a rectangular radial fin with a temperature-dependent thermal conductivity to show the effectiveness and accuracy of the method in comparison with other methods. The graphical results show the best agreement of the three methods; however, the amount of calculations of each iteration for the combination of HPM and VIM was reduced markedly for multiple iterations. It was found that the variation of the dimensionless temperature strongly depends on the dimensionless small parameter \({\varepsilon_1}\). Moreover, as the dimensionless length increases, the thermal conductivity of the fin decreases along the fin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A s :

Fin surface area (m2)

A c :

Cross-sectional area of the fin (m2)

h :

Coefficient of natural convection (W · m−1 · K−1)

r :

Radius (m)

R :

Dimensionless length

T :

Temperature (K)

T a :

Ambient temperature (K)

T b :

Temperature at the base (K)

k(T):

Thermal conductivity (W · m−1 · K−1)

k a :

Thermal conductivity at TT a (W · m−1 · K−1)

L :

Fin length (m)

L(u):

Linear term

N(u):

Nonlinear term

HPM:

Homotopy perturbation method

VIM:

Variational iteration method

\({\varepsilon}\) :

Small parameter

β :

Coefficient of linear conductivity (K −1)

θ :

Dimensionless temperature

a:

Ambient

s:

Surface

b:

Base

n:

Number of iteration

i:

Inner

o:

Outer

References

  1. Kang H.S.: KSME Int. J. 11, 311 (1997)

    Google Scholar 

  2. Kern D.Q., Kraus D.A.: Extended Surface Heat Transfer. McGraw-Hill, New York (1972)

    Google Scholar 

  3. Khani F., Raji M.A., Nejad H.H.: Commun. Nonlinear Sci. Numer. Simul. 14, 3327 (2009)

    Article  ADS  MATH  Google Scholar 

  4. Khani F., AhmadzadehRaji M., Hamedi-Nezhad S.: Commun. Nonlinear Sci. Numer. Simul. 14, 3007 (2009)

    Article  ADS  Google Scholar 

  5. Moitsheki R.J., Hayat T., Malik M.Y.: Nonlinear Anal. Real World Appl. 11, 3287 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dul’kin I.N., Garas’ko G.I.: Int. J. Heat Mass Transf. 51, 3309 (2008)

    Article  MATH  Google Scholar 

  7. Moitsheki R.J.: Nonlinear Anal. Real World Appl. 12, 867 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bellman R.: Perturbation Techniques in Mathematics, Physics and Engineering. Holt, Rinehart and Winston, New York (1964)

    Google Scholar 

  9. Cole J.D.: Perturbation Methods in Applied Mathematics. Blaisedell, Waltham (1968)

    MATH  Google Scholar 

  10. O’Malley R.E.: Introduction to Singular Perturbation. Academic Press, New York (1974)

    Google Scholar 

  11. Aziz A., Enamul Hug S.M.: ASME J. Heat Transf. 97, 300 (1975)

    Article  Google Scholar 

  12. Mokheimer E.M.A.: Heat Mass Transf. 39, 131 (2003)

    ADS  Google Scholar 

  13. He J.H.: Int. J. Nonlinear Mech. 34, 699 (1999)

    Article  ADS  MATH  Google Scholar 

  14. He J.H.: Int. J. Nonlinear Sci. Numer. Simul. 6, 207 (2005)

    Article  Google Scholar 

  15. He J.H., Wu X.H.: Chaos Solitons Fractals 29, 108 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. He J.H.: Phys. Lett. A 350, 87 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. He J.H.: Chaos Solitons Fractals 26, 827 (2005)

    Article  ADS  MATH  Google Scholar 

  18. He J.H.: Comput. Methods Appl. Mech. Eng. 167, 57 (1998)

    Article  ADS  MATH  Google Scholar 

  19. He J.H.: Comput. Methods Appl. Mech. Eng. 167, 69 (1998)

    Article  ADS  MATH  Google Scholar 

  20. He J.H.: Topol. Meth. Nonlinear Anal. 31, 205 (2008)

    MATH  Google Scholar 

  21. He J.H., Wu G.C., Austin F.: Nonlinear Sci. Lett. A 1, 1 (2010)

    Google Scholar 

  22. Rajabi A., Ganji D.D., Taherian H.: Phys. Lett. A 360, 570 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  23. Ganji D.D., Rajabi A.: Int. Commun. Heat Mass Transf. 33, 391 (2006)

    Article  Google Scholar 

  24. Ganji D.D., Rafei M., Sadighi A., Ganji Z.Z.: Int. J. Nonlinear Dyn. Eng. Sci. 1, 1 (2009)

    Google Scholar 

  25. Ghorbani A., Saberi-Nadjafi J.: Int. J. Nonlinear Sci. Numer. Simul. 8, 229 (2007)

    Article  Google Scholar 

  26. Ganji D.D., Sadighi A.: J. Comput. Appl. Math. 207, 24 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Tari H., Ganji D.D., Babazadeh H.: Phys. Lett. A 363, 213 (2007)

    Article  ADS  MATH  Google Scholar 

  28. Ganji D.D., Afrouzi G.A., Talarposhti R.A.: Phys. Lett. A 368, 450 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Babaelahi M., Ganji D.D., Joneidi A.A.: Int. J. Numer. Methods Fluids 63, 1048 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Joneidi A.A., Ganji D.D., Babaelahi M.: Int. Commun. Heat Mass Transf. 36, 1082 (2009)

    Article  Google Scholar 

  31. Aziz A., Na T.Y.: Perturbation Method in Heat Transfer. Hemisphere Publishing Corporation, Washington, DC (1984)

    Google Scholar 

  32. Mei S.L., Zhang S.W.: Comput. Math. Appl. 54, 1092 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. M.A. Noor, S.T. Mohyud-Din, Math. Prob. Eng. 11 (2008). doi:10.1155/2008/696734

  34. Noor M.A., Mohyud-Din S.T.: Appl. Math. Comput. 189, 1929 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Noor M.A., Mohyud-Din S.T.: Comput. Math. Appl. 54, 1101 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. M.A. Noor, S.T. Mohyud-Din, Diff. Equ. Nonlinear Mech. 16 (2007). doi:10.1155/2007/19529

  37. Geng F.Z., Cui M.G.: Int. J. Nonlinear Sci. Numer. Simul. 10, 597 (2009)

    Article  Google Scholar 

  38. Guo S., Mei L.: Phys. Lett. A 375, 309 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Ganji D.D., Gorji M., Alipanah M., Farnad E.: Numer. Methods Partial Differ. Equ. 26, 1463 (2009)

    MathSciNet  Google Scholar 

  40. Ghorbani A.: Chaos Solitons Fractals 39, 1486 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Ganji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hedayati, F., Ganji, D.D., Hamidi, S.M. et al. An Analytical Study on a Model Describing Heat Conduction in Rectangular Radial Fin with Temperature-Dependent Thermal Conductivity. Int J Thermophys 33, 1042–1054 (2012). https://doi.org/10.1007/s10765-012-1222-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-012-1222-0

Keywords

Navigation