Skip to main content
Log in

Non-Fourier Thermoelastic Analysis of an Annular Fin with Variable Convection Heat Transfer Coefficient

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This paper numerically investigates the hyperbolic thermoelastic problem of an annular fin. The ambient convection heat transfer coefficient of the fin is assumed to be spatially varying. The major difficulty in dealing with such problems is the suppression of numerical oscillations in the vicinity of a jump discontinuity. An efficient numerical scheme involving hybrid application of Laplace transform and control volume method in conjunction with hyperbolic shape functions is used to solve the linear hyperbolic heat conduction equation. The transformed nodal temperatures are inverted to the physical quantities by using numerical inversion of the Laplace transform. Then the stress distributions in the annular fin are calculated subsequently. The results in the illustrated examples show that the application of hyperbolic shape functions can successfully suppress the numerical oscillations in the vicinity of jump discontinuities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c :

Heat capacity (J· kg−1· K−1)

E :

Elastic modulus (MPa)

g :

Volumetric energy source (W· m−3)

H :

Dimensionless convection heat transfer coefficient function

h :

Convection heat transfer coefficient (W· m−2· K−1)

k :

Thermal conductivity (W· m−1· K−1)

l :

Dimensionless distance between two nodes

q :

Heat flux (W· m−2)

r :

Radial coordinate (m)

r 1 :

Base radius of the annular fin (m)

r 2 :

Tip radius of the annular fin (m)

s :

Laplace transform parameter

T :

Temperature (K)

T b :

Fin base temperature (K)

T :

Ambient temperature (K)

t :

Time coordinate (s)

u :

Radial displacement component (m)

w :

Propagation speed of thermal wave (m· s−1)

α :

Thermal diffusivity (m2· s−1)

β :

Dimensionless relaxation time, \({\alpha \tau /r_{1}^{2}}\)

γ :

Constant

δ :

Fin thickness (m)

λ :

(β s2 + s)1/2

ν :

Poisson’s ratio

\({\xi}\) :

γ (β s + 1)

ρ :

Density (kg· m−3)

σ r :

Radial stress component (MPa)

σ θ :

Tangential stress component (MPa)

τ :

Relaxation time (s)

ω :

Thermal expansion coefficient (K−1)

*:

Dimensionless quantity

References

  1. Kraus A.D., Aziz A., Welty J.: Extended Surface Heat Transfer, pp. 30–68. Wiley, New York (2001)

    Google Scholar 

  2. Yuan W.W., Lee S.C.: J. Heat Transf. 111, 178 (1989)

    Article  Google Scholar 

  3. Vernotte P.: Comptes Rendus 246, 3154 (1958)

    MathSciNet  Google Scholar 

  4. Cattaneo C.: Comptes Rendus 247, 431 (1958)

    MathSciNet  Google Scholar 

  5. Maurer M.J.: J. Appl. Phys. 40, 5123 (1969)

    Article  ADS  Google Scholar 

  6. Taitel Y.: Int. J. Heat Mass Transf. 15, 369 (1972)

    Article  Google Scholar 

  7. Luikov A.V., Bubnov V.A., Soloview I.A.: Int. J. Heat Mass Transf. 19, 245 (1976)

    Article  ADS  Google Scholar 

  8. Peshkov V.: J. Phys. 8, 381 (1944)

    Google Scholar 

  9. Bertman B., Sandiford D.J.: Sci. Am. 222, 92 (1970)

    Article  ADS  Google Scholar 

  10. Glass D.E., Özisik, M.N., McRae D.S.: Numer. Heat Transf. 8, 497 (1985)

    ADS  Google Scholar 

  11. Lin J.Y., Chen H.T.: Appl. Math. Modell. 18, 384 (1994)

    Article  MATH  Google Scholar 

  12. Jiang F.: Heat Mass Transf. 42, 1083 (2006)

    Article  ADS  Google Scholar 

  13. Chen T.M.: Int. J. Heat Mass Transf. 50, 4424 (2007)

    Article  MATH  Google Scholar 

  14. Moosaie A.: Int. Commun. Heat Mass Transf. 35, 103 (2008)

    Article  Google Scholar 

  15. Mishra S.C., Kumar T.B.P.: Trans. ASME J. Heat Transf. 131, 111302–111303 (2009)

    Article  Google Scholar 

  16. Lam T.T.: Int. J. Therm. Sci. 49, 1639 (2010)

    Article  Google Scholar 

  17. Dabby F.W., Paek U.: IEEE J. Quantum Electron. 8, 106 (1972)

    Article  ADS  Google Scholar 

  18. Blackwell B.F.: Trans. ASME J. Heat Transf. 112, 567 (1990)

    Article  ADS  Google Scholar 

  19. Izadpanah E., Talebil S., Hekmat M.H.: Proc. IMechE C 225, 429 (2011)

    Article  Google Scholar 

  20. Yang Y.C., Lee H.L.: J. Therm. Stresses 24, 779 (2001)

    Article  Google Scholar 

  21. Chen H.T., Lin J.Y.: Int. J. Heat Mass Transf. 36, 2891 (1993)

    Article  MATH  Google Scholar 

  22. Liu K.C., Chang P.C.: Appl. Math. Modell. 31, 369 (2007)

    Article  MATH  Google Scholar 

  23. Chen H.T., Lin H.J.: Trans. ASME J. Appl. Mech. 62, 208 (1995)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Ching Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, HL., Chang, WJ., Chen, WL. et al. Non-Fourier Thermoelastic Analysis of an Annular Fin with Variable Convection Heat Transfer Coefficient. Int J Thermophys 33, 1068–1081 (2012). https://doi.org/10.1007/s10765-012-1220-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-012-1220-2

Keywords

Navigation