Skip to main content
Log in

Transient Heat Conduction in a Functionally Graded Cylindrical Panel Based on the Dual Phase Lag Theory

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The transient heat conduction in a functionally graded cylindrical panel is investigated based on the dual phase lag (DPL) theory in this article. Except for the phase lags which are assumed to be constant, all the other material properties of the panel are assumed to change continuously along the radial direction according to a power-law formulation with different non-homogeneity indices. The heat conduction equations based on the DPL theory in the cylindrical coordinate system are written in a general form which are then used for the analyses of four different geometries: (1) a hollow cylinder of an infinite length; (2) a hollow cylinder of a finite length; (3) a cylindrical panel of an infinite length; and (4) a cylindrical panel of a finite length. Using the Laplace transform, the analytical solutions for temperature and heat flux are obtained in the Laplace domain. The solutions are then converted into the time domain by employing the fast Laplace inversion technique. The exact expressions for the radial thermal wave speed are obtained for the four different geometries. The numerical results are displayed to reveal the effect of different approximations of the DPL theory on the temperature distribution for various non-homogeneity indices. The results are verified with those reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babaei M.H., Chen Z.T.: Int. J. Thermophys. 29, 1457 (2008)

    Article  ADS  Google Scholar 

  2. Chandrasekharaiah D.S.: Appl. Mech. Rev. 51, 705 (1998)

    Article  ADS  Google Scholar 

  3. Hetnarski R.B., Ignaczak J.: J. Therm. Stresses 22, 451 (1999)

    Article  MathSciNet  Google Scholar 

  4. Cattaneo C.: Mat. Fis. Univ. Modena 3, 83 (1948)

    MathSciNet  Google Scholar 

  5. Vernotte P.: Comptes Rendus 246, 3154 (1958)

    MathSciNet  Google Scholar 

  6. Kroner C., Bergmann H.W.: Appl. Phys. A 67, 397 (1998)

    Article  ADS  Google Scholar 

  7. Godoy S., Garcia-Colin L.S.: Phys. Rev. E 55, 2127 (1997)

    Article  ADS  Google Scholar 

  8. Tzou D.Y.: J. Heat Transfer 117, 8 (1995)

    Article  Google Scholar 

  9. Tzou D.Y.: Int. J. Heat Mass Transfer 38, 3231 (1995)

    Article  Google Scholar 

  10. Tzou D.Y.: J. Thermophys. Heat Transfer 9, 686 (1995)

    Article  Google Scholar 

  11. Choudhuri S.K.R.: J. Therm. Stresses 30, 231 (2007)

    Article  Google Scholar 

  12. Quintanilla R., Racke R.: Proc. R. Soc. A 463, 659 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Quintanilla R.: J. Therm. Stresses 32, 1270 (2009)

    Article  Google Scholar 

  14. Liu K.C., Cheng P.J.: Numer. Heat Transfer, Part A 49, 589 (2006)

    Article  ADS  Google Scholar 

  15. Hosseini S.M., Akhlaghi M., Shakeri M.: Heat Mass Transfer 43, 669 (2007)

    Article  ADS  Google Scholar 

  16. Liu K.C.: Comput. Phys. Commun. 177, 307 (2007)

    Article  ADS  MATH  Google Scholar 

  17. Zhou J., Zhang Y., Chen J.K.: Int. J. Therm. Sci. 48, 1477 (2009)

    Article  Google Scholar 

  18. Zhang Y., Zheng C., Liu Y., Shao L., Gou C.: Acta Mech. Sin. 25, 205 (2009)

    Article  ADS  Google Scholar 

  19. Asgari M., Akhlaghi M.: Heat Mass Transfer 45, 1383 (2009)

    Article  ADS  Google Scholar 

  20. Chen T.M.: Int. J. Heat Mass Transfer 53, 1319 (2010)

    Article  MATH  Google Scholar 

  21. Atefi G., Talaee M.R.: Arch. Appl. Mech. 81, 569 (2011)

    Article  ADS  Google Scholar 

  22. Keles I., Conker C.: Eur. J. Mech. A. Solids 30, 449 (2011)

    Article  ADS  Google Scholar 

  23. Torabi M., Saedodin S.: J. Thermophys. Heat Transfer 25, 239 (2011)

    Article  Google Scholar 

  24. Al-Nimr M.A., Al-Huniti N.S.: J. Therm. Stresses 23, 731 (2000)

    Article  Google Scholar 

  25. Shao Z.S.: Int. J. Press. Vessels Pip. 82, 155 (2005)

    Article  Google Scholar 

  26. Jabbari M., Bahtui A., Eslami M.R.: Int. J. Press. Vessels Pip. 86, 296 (2009)

    Article  Google Scholar 

  27. Ying J., Wang H.M.: Int. J. Press. Vessels Pip. 87, 714 (2010)

    Article  Google Scholar 

  28. Akbarzadeh A.H., Babaei M.H., Chen Z.T.: Proc. IMechE Part C: J. Mech. Eng. Sci. 225, 2537 (2011)

    Article  Google Scholar 

  29. Babaei M.H., Chen Z.T.: J. Thermophys. Heat Transfer 24, 325 (2010)

    Article  Google Scholar 

  30. Quintanilla R., Racke R.: Int. J. Heat Mass Transfer 49, 1209 (2006)

    Article  MATH  Google Scholar 

  31. Durbin F.: Comput. J. 17, 371 (1974)

    MathSciNet  MATH  Google Scholar 

  32. Tzou D.Y., Ozisik M.N., Chiffelle R.J.: J. Heat Transfer 116, 1034 (1994)

    Article  Google Scholar 

  33. Abate J.: ORSA J. Comput. 7, 36 (1995)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. T. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akbarzadeh, A.H., Chen, Z.T. Transient Heat Conduction in a Functionally Graded Cylindrical Panel Based on the Dual Phase Lag Theory. Int J Thermophys 33, 1100–1125 (2012). https://doi.org/10.1007/s10765-012-1204-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-012-1204-2

Keywords

Navigation