Skip to main content

Advertisement

Log in

Molecular Entropy, Thermal Efficiency, and Designing of Working Fluids for Organic Rankine Cycles

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A shortage of fossil energy sources boosts the utilization of renewable energy. Among numerous novel techniques, recovering energy from low-grade heat sources through power generation via organic Rankine cycles (ORCs) is one of the focuses. Properties of working fluids are crucial for the ORC’s performance. Many studies have been done to select proper working fluids or to design new working fluids. However, no researcher has systematically investigated the relationship between molecular structures and thermal efficiencies of various working fluids for an ideal ORC. This paper has investigated the interrelations of molecular structures, molecular entropies, and thermal efficiencies of various working fluids for an ideal ORC. By calculating thermal efficiencies and molecular entropies, we find that the molecular entropy is the most appropriate thermophysical property of a working fluid to determine how much energy can be converted into work and how much cannot in a system. Generally speaking, working fluids with low entropies will generally have high thermal efficiency for an ideal ORC. Based on this understanding, the direct interrelations of molecular structures and entropies provide an explicit interrelation between molecular structures and thermal efficiencies, and thus provide an insightful direction for molecular design of novel working fluids for ORCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hung T.C.: Energy Convers. Manage. 42, 539 (2001)

    Article  Google Scholar 

  2. Maizza V., Maizza A.: Appl. Therm. Eng. 21, 381 (2001)

    Article  Google Scholar 

  3. Liu B.T., Chien K.H., Wang C.C.: Energy 29, 1207 (2004)

    Article  Google Scholar 

  4. Saleh B., Koglbauer G., Wenland M., Fischer J.: Energy 32, 1210 (2007)

    Article  Google Scholar 

  5. Madhawa Hettiarachchi H.D., Golubovic M., Worek W.M., Ikegami Y.: Energy 32, 1698 (2007)

    Article  Google Scholar 

  6. Tchanche B.F., Papadakis G., Lambrinos G., Frangoudakis A.: Appl. Therm. Eng. 29, 2468 (2009)

    Article  Google Scholar 

  7. Lakew A.A., Bolland O.: Appl. Therm. Eng. 30, 1262 (2010)

    Article  Google Scholar 

  8. Hung T.C., Wang S.K.: Energy 35, 1403 (2010)

    Article  Google Scholar 

  9. Chen H.J., Goswami D.Y., Stefanakos E.K.: Renew. Sust. Energ. Rev. 14, 3059 (2010)

    Article  Google Scholar 

  10. Rayegan R., Tao Y.X.: Renew. Energy 36, 659 (2011)

    Article  Google Scholar 

  11. Papadopoulos A.I., Stijepovic M., Linke P.: Appl. Therm. Eng. 30, 760 (2010)

    Article  Google Scholar 

  12. Anisimov M.A., Wang J.T.: Phys. Rev. Lett. 97, 25703 (2006)

    Article  ADS  Google Scholar 

  13. Wang J.T., Anisimov M.A.: Phys. Rev. E 75, 051107 (2007)

    Article  ADS  Google Scholar 

  14. Dincer I., Cengel Y.A.: Entropy 3, 116 (2001)

    Article  ADS  Google Scholar 

  15. Lide, D.R. (ed): CRC Handbook of Chemistry and Physics, 90th edn. CRC Press, Boca Raton (FL, 2010)

    Google Scholar 

  16. Parsons R.A.: ASHRAE Handbook—Fundamentals. ASHRAE, Atlanta, GA (1997)

    Google Scholar 

  17. M. Frenkel, G.J. Kabo, K.N. Marsh, G.N. Roganov, R.C. Wilhoit, Thermodynamics of Organic Compounds in the Gas State, vols. I, II (TRC, College Station, TX, 1994)

  18. Barin I.: Thermochemical Data of Pure Substances, 3rd edn. VCH Publishers Inc., New York (1995)

    Book  Google Scholar 

  19. Lemmon E.W., Huber M.L., Mclinden M.O.: Fluid Thermodynamic and Transport Properties-REFPROP, Version 8.0. National Institute of Standards and Technology, Gaithersburg, MD (2007)

    Google Scholar 

  20. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell. J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Hnox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski. R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprish, A.D. Daniels, O.Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision A.02 (Gaussian, Inc., Wallingford, CT, 2009)

  21. Foresman J.B., Frisch Æ.: Exploring Chemistry with Electronic Structure Methods, 2nd edn. Gaussian, Inc., Pittsburgh, PA (1996)

    Google Scholar 

  22. McQuarrie D.A., Simon J.D.: Molecular Thermodynamics. University Science Books, Sausalito, CA (1999)

    Google Scholar 

  23. J.W. Ochterski, Thermochemistry in Gaussian, http://www.gaussian.com/g_whitepap/thermo/thermo.pdf. Accessed 21 Oct 2011

  24. Li X.W., Shibata E., Nakamura T.: J. Chem. Eng. Data 48, 727 (2003)

    Article  Google Scholar 

  25. Serdaroglu G., Durmaz S.: Indian J. Chem. 49, 861 (2010)

    Google Scholar 

  26. Knox J.H.: Molecular Thermodynamics: An Introduction to Statistical Mechanics for Chemists. Wiley, Edinburgh (1978)

    Google Scholar 

  27. Peter Guthrie J.: J. Phys. Chem. A 105, 8495 (2001)

    Article  Google Scholar 

  28. House J.E.: Inorganic Chemistry. Academic Press, Burlington, MA (2008)

    Google Scholar 

  29. Z.Z. Liu, Entropy and Its Applications in Chemistry (Higher Education Press, Beijing, 1993) [In Chinese]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingtao Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Zhang, J. & Chen, Z. Molecular Entropy, Thermal Efficiency, and Designing of Working Fluids for Organic Rankine Cycles. Int J Thermophys 33, 970–985 (2012). https://doi.org/10.1007/s10765-012-1200-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-012-1200-6

Keywords

Navigation