Skip to main content
Log in

Design and Validation of a High-Temperature Comparative Thermal-Conductivity Measurement System

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A measurement system has been designed and built for the specific application of measuring the effective thermal conductivity of a composite, nuclear-fuel compact (small cylinder) over a temperature range of 100 °C to 800 °C. Because of the composite nature of the sample as well as the need to measure samples pre- and post-irradiation, measurement must be performed on the whole compact non-destructively. No existing measurement system is capable of obtaining its thermal conductivity in a non-destructive manner. The designed apparatus is an adaptation of the guarded-comparative-longitudinal heat flow technique. The system uniquely demonstrates the use of a radiative heat sink to provide cooling which greatly simplifies the design and setup of such high-temperature systems. The design was aimed to measure thermal-conductivity values covering the expected range of effective thermal conductivity of the composite nuclear fuel from 10 W . m−1 . K−1 to 70 W . m−1 . K−1. Several materials having thermal conductivities covering this expected range have been measured for system validation, and results are presented. A comparison of the results has been made to data from existing literature. Additionally, an uncertainty analysis is presented finding an overall uncertainty in sample thermal conductivity to be 6 %, matching well with the results of the validation samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.H. Southworth, P.E. Macdonald, D.J. Harrell, C.V. Park, E.L. Shaber, M.R. Holbrook, D.A. Petti, The Next Generation Nuclear Plant (NGNP) Project, Idaho National Laboratory Report INEEL/CON-03-01150 (2003)

  2. Hong S.G., Byun T.S., Lowden R.A., Snead L.L., Katoh Y.: J. Am. Ceram. Soc. 90, 184 (2007)

    Article  Google Scholar 

  3. S.B. Grover, D.A. Petti, Initial Irradiation of the First Advanced Gas Reactor Fuel Development and Qualification Experiment in the Advanced Test Reactor, Idaho National Laboratory Report INL/CON-07-12981 (2007)

  4. L. Kubicar, V. Bohac, Proceedings of the International Thermal Conductivity Conference, vol. 24 (Technomic Publishing Company, Lancaster, 1997), pp. 135–149

  5. Franco A.: Appl. Therm. Eng. 27, 2495 (2007)

    Article  Google Scholar 

  6. Filla B.J.: Rev. Sci. Instrum. 68, 2822 (1997)

    Article  ADS  Google Scholar 

  7. Nunes dos Santos W.: J. Eur. Ceram. Soc. 28, 15 (2008)

    Article  Google Scholar 

  8. ASTM Standard C1113 (ASTM International, West Conshohocken, 2009)

  9. de Wilde P., Griffiths R., Goodhew S.: Build. Simul. 1, 36 (2008)

    Article  Google Scholar 

  10. ASTM Standard E1461 (ASTM International, West Conshohocken, 2007)

  11. Gustafsson S.E.: Rev. Sci. Instrum. 62, 797 (1991)

    Article  ADS  Google Scholar 

  12. Schmidt A.J., Cheaito R., Chiesa M.: Rev. Sci. Instrum. 80, 094901 (2009)

    Article  ADS  Google Scholar 

  13. Cahill D.G., Pohl R.O.: Phys. Rev. B 35, 4067 (1987)

    Article  ADS  Google Scholar 

  14. ASTM Standard C177 (ASTM International, West Conshohocken, 2004)

  15. M.J. Laubitz, in, ed. by K. Maglic, A. Cezairliyan, V. Peletsky Compendium of Thermophysical Property Measurement Methods, vol. 1, Survey of Measurement Techniques (Plenum Press, New York, 1984), pp. 11–59

  16. J.M. Corsan, in, ed. by K. Maglic, A. Cezairliyan, V. Peletsky Compendium of Thermophysical Property Measurement Methods, vol. 2: Recommended Measurement Techniques and Practices (Plenum Press, New York, 1992), pp. 3–31

  17. Flynn D.R.: In: Maglic, K., Cezairliyan, A., Peletsky, V. (eds) Compendium of Thermophysical Property Measurement Methods, vol. 2: Recommended Measurement Techniques and Practices, pp. 33–75. Plenum Press, New York (1992)

    Chapter  Google Scholar 

  18. Maglic, K.D., Cezairliyan, A., Peletsky, V.E. (eds): Compendium of Thermophysical Property Measurement Methods, vol. 2: Recommended Measurement Techniques and Practices. Plenum Press, New York (1992)

    Google Scholar 

  19. Maglic, K.D., Cezairliyan, A., Peletsky, V.E. (eds): Compendium of Thermophysical Property Measurement Methods, vol. 1: Survey of Measurement Techniques. Plenum Press, New York (1984)

    Google Scholar 

  20. Tye R.P.: Thermal Conductivity. Academic Press, London (1969)

    Google Scholar 

  21. Tye R.P.: Thermal Conductivity. Academic Press, London (1969)

    Google Scholar 

  22. Van Dusen M.S., Shelton S.M.: J. Res. Natl. Bur. Stand. 12, 429 (1934)

    Google Scholar 

  23. Ballard S.S., McCarthy K.A., Davis W.C.: Rev. Sci. Instrum. 21, 905 (1950)

    Article  ADS  Google Scholar 

  24. Morris R.G., Hust J.G.: Phys. Rev. 124, 1426 (1961)

    Article  ADS  Google Scholar 

  25. Francl J., Kingery W.P.: J. Am. Ceram. Soc. 37, 80 (1954)

    Article  Google Scholar 

  26. Mirkovich V.V.: J. Am. Ceram. Soc. 48, 387 (1965)

    Article  Google Scholar 

  27. Laubitz M.J.: In: Tye, R.P. (ed) Thermal Conductivity, pp. 111–183. Academic Press, London (1969)

    Google Scholar 

  28. J.N. Sweet, E.P. Roth, M. Moss, G.M. Haseman, J.A. Anaya, Comparative Thermal Conductivity Measurements at Sandia National Laboratories, Sandia National Laboratory Report SAND86-0840 (1986)

  29. Sweet J.N.: Int. J. Thermophys. 7, 743 (1986)

    Article  ADS  Google Scholar 

  30. Pillai C.S., George A.M.: Int. J. Thermophys. 12, 563 (1991)

    Article  ADS  Google Scholar 

  31. ASTM Standard E1225 (ASTM International, West Conshohocken, 2004)

  32. J.F. Babelot, P.S. Gaal, J. Van Geel, H.E. Schmidt, Proceedings of the International Thermal Conductivity Conference, vol. 22 (Technomic Publishing Company, Lancaster, 1993), pp. 913–919

  33. Li C.H., Peterson G.P.: J. Appl. Phys. 99, 084314 (2006)

    Article  ADS  Google Scholar 

  34. Michalowski J., Mikociak D., Konsztowicz K.J., Blazewicz S.: J. Nucl. Mater. 393, 47 (2009)

    Article  ADS  Google Scholar 

  35. D.A. Didion, An Analysis and Design of a Linear Guarded Cut-bar Apparatus for Thermal Conductivity Measurements, National Technical Information Service Report AD-665789 (1968)

  36. Xing C., Jensen C., Ban H., Phillips J.: Meas. Sci. Technol. 22, 075702 (2011)

    Article  ADS  Google Scholar 

  37. Laubitz M.J., McElroy D.L.: Metrologia 7, 1 (1971)

    Article  ADS  Google Scholar 

  38. Kim K.J., Montoya B., Razani A., Lee K.H.: Int. J. Hydrogen Energy 26, 609 (2001)

    Article  Google Scholar 

  39. Lloyd G., Kim K.J., Razani A., Feldman K.T.: J. Thermophys. Heat Transf. 12, 132 (1998)

    Article  Google Scholar 

  40. Sweet J.N., Roth E.P., Moss M.: Int. J. Thermophys. 8, 593 (1987)

    Article  ADS  Google Scholar 

  41. R.H. Bogaard, Proceedings of the International Thermal Conductivity Conference, vol. 18 (Plenum Press, New York, 1983), pp. 175–185

  42. Graves R.S., Kollie T.G., McElroy D.L., Gilchrist K.E.: Int. J. Thermophys. 12, 409 (1991)

    Article  ADS  Google Scholar 

  43. Touloukian Y.S., Powell R.W., Ho C.Y., Klemens P.G.: Thermophysical Properties of Matter, Thermal Conductivity: Metallic Elements and Alloys, vol. 1. IFI/Plenum Press, New York (1970)

    Google Scholar 

  44. D.R. Flynn, R.R. Zarr, W. Healy, M.H. Hahn, in Insulation Materials: Testing and Applications: 4th vol., ASTM STP 1426, ed. by A. Desjarlais, R. Zarr (ASTM International, West Conshohocken, 2002)

  45. Omega Engineering Inc., Omega Temperature Measurement Handbook (Omega Engineering Inc., Stamford, 2007)

  46. Maglic K.D., Perovic N.L., Stanimirovic A.M.: Int. J. Thermophys. 15, 741 (1994)

    Article  ADS  Google Scholar 

  47. HighTempMetals, Inconel 625 Technical Data, http://www.hightempmetals.com/techdata/hitempInconel625data.php. Accessed July 2010

  48. Battelle Memorial Institute, Inconel 625 Sheet & Coil Properties. http://www.upmet.com/625-physical.shtml. Accessed July 2010

  49. Coleman H.W., Steele W.G.: Experimentation, Validation, and Uncertainty Analysis for Engineers. Wiley, New York (2009)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Jensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, C., Xing, C., Folsom, C. et al. Design and Validation of a High-Temperature Comparative Thermal-Conductivity Measurement System. Int J Thermophys 33, 311–329 (2012). https://doi.org/10.1007/s10765-012-1161-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-012-1161-9

Keywords

Navigation