International Journal of Thermophysics

, Volume 33, Issue 1, pp 91–104 | Cite as

Characterization of Sodium Nitrate as Phase Change Material

Article

Abstract

In this article the results of material investigations of sodium nitrate (NaNO3) with a melting temperature of 306 °C as a phase change material (PCM) are presented. The thermal stability was examined by kinetic experiments and longduration oven tests. In these experiments the nitrite formation was monitored. Although some nitrite formation in the melt was detected, results show that the thermal stability of NaNO3 is sufficient for PCM applications. Various measurements of thermophysical properties of NaNO3 are reported. These properties include the thermal diffusivity by the laser-flash, the thermal conductivity by the transient hot wire, and the heat capacity by the differential scanning calorimeter method. The current measurements and literature values are compared. In this article comprehensive temperature-dependent thermophysical values of the density, heat capacity, thermal diffusivity, and thermal conductivity in the liquid and solid phases are reported.

Keywords

Hot wire Laser-flash Phase change material Sodium nitrate Thermal energy storage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tamme R., Bauer T., Buschle J., Laing D., Müller-Steinhagen H., Steinmann W.-D.: Int. J. Energy Res. 32, 264 (2008). doi:10.1002/er.1346 CrossRefGoogle Scholar
  2. 2.
    T. Bauer, D. Laing, W.-D. Steinmann, U. Kröner, R. Tamme, in Proceedings Eurosun 2008, Lisbon, Portugal, 2008. Paper ID 163Google Scholar
  3. 3.
    W. Laue, M. Thiemann, E. Scheibler, K.W. Wiegand, Ullmann’s Encycl. Ind. Chem. (2000). doi:10.1002/14356007.a17_265
  4. 4.
    L. Pokorny, I. Maturana, W.H. Bortle Kirk-Othmer Encycl. Chem. Technol. (2006). doi:10.1002/0471238961.1915040916151115.a01.pub2
  5. 5.
    J. Lumdsen, in Thermodynamics of Molten Salt Mixtures, ed. by J. Lumdsen (Academic Press, New York, 1966), p. 109Google Scholar
  6. 6.
    Jriri T., Rogez J., Bergman C., Mathieu J.C.: Thermochim. Acta 266, 147 (1995). doi:10.1016/0040-6031(95)02337-2 CrossRefGoogle Scholar
  7. 7.
    Sabbah R., Xu-wu A., Chickos J.S., Planas Leitão M.L., Roux M.V., Torres L.A.: Thermochim. Acta 331, 93 (1999). doi:10.1016/S0040-6031(99)00009-X CrossRefGoogle Scholar
  8. 8.
    Nissen D.A., Meeker D.E.: Inorg. Chem. 22, 716 (1983). doi:10.1021/ic00147a004 CrossRefGoogle Scholar
  9. 9.
    Kramer C.M., Munir Z.A., Volponi J.V.: Thermochim. Acta 55, 11 (1982). doi:10.1016/0040-6031(82)87002-0 CrossRefGoogle Scholar
  10. 10.
    Freeman E.S.: J. Am. Chem. Soc. 79, 838 (1957). doi:10.1021/ja01561a015 CrossRefGoogle Scholar
  11. 11.
    Bartholomew R.F.: J. Phys. Chem. 70, 3442 (1966). doi:10.1021/j100883a012 CrossRefGoogle Scholar
  12. 12.
    Bradshaw R.W., Carling R.W.: Sandia National Laboratories Report SAND87-80055. Sandia National Labs, Livermore (1987)Google Scholar
  13. 13.
    Kust R.N., Burke J.D.: Inorg. Nucl. Chem. Lett. 6, 333 (1970). doi:10.1016/0020-1650(70)80243-4 CrossRefGoogle Scholar
  14. 14.
    Paniccia F., Zambonin P.G.: J. Phys. Chem. 77, 1810 (1973). doi:10.1021/j100633a018 CrossRefGoogle Scholar
  15. 15.
    Sirotkin G.D.: Russ. J. Inorg. Chem. 4, 1180 (1959)Google Scholar
  16. 16.
    J.A. Plambeck, “Fused Salt Systems”, in Encyclopedia of Electrochemistry of the Elements, vol. 10, ed. by A.J. Bard (Marcel Dekker, New York, 1976), p. 189Google Scholar
  17. 17.
    Bader R.G., Schawe J.E.K., Höhne G.W.H.: Thermochim. Acta 229, 85 (1993). doi:10.1016/0040-6031(93)80316-3 CrossRefGoogle Scholar
  18. 18.
    Abald E.R.: Corrosion Guide. Elsevier, Amsterdam (1968)Google Scholar
  19. 19.
    J. Moreno, D. Kearney, presented at NREL Trough Thermal Storage Workshop, Golden, CO, 2003Google Scholar
  20. 20.
    Gesi K.: 30 KNO3 Family. Landolt-Börnstein, Hellwege (2004). doi:10.1007/b68045 Google Scholar
  21. 21.
    Y.S. Touloukian, C.Y. Ho, R.W. Powell, M.C. Nicolaou, in Thermophysical Properties of Matter, vols. 5, 10, 13 (Plenum, New York, 1973, 1977, 1979)Google Scholar
  22. 22.
    Kracek F.C.: J. Am. Chem. Soc. 53, 2609 (1931). doi:10.1021/ja01358a022 CrossRefGoogle Scholar
  23. 23.
    Petitet J.P., Fraiha M., Tufeu R., Le Neindre B.: Int. J. Thermophys. 3, 137 (1982). doi:10.1007/BF00503636 ADSCrossRefGoogle Scholar
  24. 24.
    H. Schinke, F. Sauerwald, Zeitschrift für anorganische Chemie 287, 313 (1960). doi:10.1002/zaac.19562870417 [in German]
  25. 25.
    Tufeu R., Petitet J.P., Denielou L., Le Neindre B.: Int. J. Thermophys. 6, 315 (1985). doi:10.1007/BF00500266 ADSCrossRefGoogle Scholar
  26. 26.
    V.D. Polyakov, S.H. Beruli, Izv. Siktora, Fiz.-Khim. Anal. 26, 164 (1955) [in Russian]Google Scholar
  27. 27.
    Janz G.J., Dampier F.W., Lakshminarayanan G.R., Lorenz P.K., Tomkins R.P.T.: National Standard Reference Data Series (NSRDS). National Bureau of Standards, Washington, DC (1968)Google Scholar
  28. 28.
    Janz G.J., Krebs U., Siegenthaler H.F., Tomkins R.P.T.: J. Phys. Chem. Ref. Data 1, 581 (1972). doi:10.1063/1.3253103 ADSCrossRefGoogle Scholar
  29. 29.
    Murgulescu I.G., Zuca S.: Electrochim. Acta 14, 519 (1969). doi:10.1016/0013-4686(69)87037-4 CrossRefGoogle Scholar
  30. 30.
    Rogers D.J., Janz G.J.: J. Chem. Eng. Data 27, 424 (1982). doi:10.1021/je00030a017 CrossRefGoogle Scholar
  31. 31.
    Goodwin H.M., Kalmus H.T.: Phys. Rev. Ser. I 28, 1 (1909). doi:0.1103/PhysRevSeriesI.28.1 ADSGoogle Scholar
  32. 32.
    A. Mustajoki, Ann. Acad. Sci. Fenn. A6 Physica 5, 3 (1957) [in German]Google Scholar
  33. 33.
    Ichikawa K., Matsumoto T.: Bull. Chem. Soc. Jpn. 56, 2093 (1983). doi:10.1246/bcsj.56.2093 CrossRefGoogle Scholar
  34. 34.
    Takahashi Y., Sakamoto R., Kamimoto M.: Int. J. Thermophys. 9, 1081 (1988). doi:10.1007/BF01133275 ADSCrossRefGoogle Scholar
  35. 35.
    Carling R.W.: Thermochim. Acta 60, 265 (1983). doi:10.1016/0040-6031(83)80248-2 CrossRefGoogle Scholar
  36. 36.
    Nguyen-Duy P., Dancy E.A.: Thermochim. Acta 39, 95 (1980). doi:10.1016/0040-6031(80)80002-5 CrossRefGoogle Scholar
  37. 37.
    Zhang X., Fujii M.: Int. J. Thermophys. 21, 71 (2000). doi:10.1023/A:1006604820755 CrossRefGoogle Scholar
  38. 38.
    Gustafsson S.E., Halling N.-O., Kjellander R.A.E.Z.: Z. Naturforsch A Phys. Sci. 23, 44 (1968)Google Scholar
  39. 39.
    Odawara O., Okada I., Kawamura K.: J. Chem. Eng. Data 22, 222 (1977). doi:10.1021/je60073a025 CrossRefGoogle Scholar
  40. 40.
    Araki N.: Int. J. Thermophys. 5, 53 (1984). doi:10.1007/BF00502079 ADSCrossRefGoogle Scholar
  41. 41.
    Kato Y., Kobayasi K., Araki N., Furukawa K.: J. Phys. E Sci. Instrum. 8, 461 (1975). doi:10.1088/0022-3735/8/6/011 ADSCrossRefGoogle Scholar
  42. 42.
    K. Kobayasi, N. Araki, Y. Iida, in Proceedings 7th International Heat Transfer Conference, vol. 6, München, Germany, 1982, pp. 467–472Google Scholar
  43. 43.
    W. Knothe, Doctoral Thesis, RWTH-Aachen, 1985 [in German]Google Scholar
  44. 44.
    Ohta H., Ogura G., Waseda Y., Suzuki M.: Rev. Sci. Instrum. 61, 2645 (1990). doi:10.1063/1.1141853 ADSCrossRefGoogle Scholar
  45. 45.
    Nagasaka Y., Nagashima A.: Int. J. Thermophys. 12, 769 (1991). doi:10.1007/BF00502404 ADSCrossRefGoogle Scholar
  46. 46.
    Bloom H., Doroszkowski A., Tricklebank S.B.: Aust. J. Chem. 18, 1171 (1965)CrossRefGoogle Scholar
  47. 47.
    Omotani T., Nagashima A.: J. Chem. Eng. Data 29, 1 (1984). doi:10.1021/je00035a001 CrossRefGoogle Scholar
  48. 48.
    Turnbull A.G.: Aust. J. Appl. Sci. 12, 324 (1961)Google Scholar
  49. 49.
    Omotani T., Nagasaka Y., Nagashima A.: Int. J. Thermophys. 3, 17 (1982). doi:10.1007/BF00503955 ADSCrossRefGoogle Scholar
  50. 50.
    White L.R., Davis H.T.: J. Chem. Phys. 47, 5433 (1967). doi:10.1063/1.1701811 ADSCrossRefGoogle Scholar
  51. 51.
    Santini R., Tadrist L., Pantaloni J., Cerisier P.: Int. J. Heat Mass Transf. 27, 623 (1984). doi:10.1016/0017-9310(84)90034-6 CrossRefGoogle Scholar
  52. 52.
    McDonald J., Davis H.D.: J. Phys. Chem. 74, 725 (1970). doi:10.1021/j100699a007 CrossRefGoogle Scholar
  53. 53.
    McLaughlin E.: Chem. Rev. 64, 389 (1964). doi:10.1021/cr60230a003 CrossRefGoogle Scholar
  54. 54.
    Kitade S., Kobayashi Y., Nagasaka Y., Nagashima A.: High Temp. High Press. 21, 219 (1989)Google Scholar
  55. 55.
    Standard C1113-99 (ASTM International, West Conshohocken, 2004)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institute of Technical ThermodynamicsGerman Aerospace Center (DLR)StuttgartGermany

Personalised recommendations