Skip to main content
Log in

Numerical Modeling of Heat Flux in Fixed-Point Cells Due to the Hydrostatic-Head Effect

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The article presents the numerical analysis of a particular thermal effect, which occurs during the calibration of standard platinum resistance thermometers in fixed-point cells. The temperature within the fixed-point cell varies linearly with the immersion depth due to the hydrostatic-head effect, so a quasi-linear temperature gradient in the vertical direction is inherently present. If there is a temperature gradient, a resulting heat flux will appear. This heat flux flows across the thermal conductivities, which change with depth, so the resulting temperature field is distorted. The key issue that is tackled in this article is the magnitude of these temperature deviations and their influence on the measurement accuracy. This effect should not be confused with the perturbing heat exchange toward the thermal enclosure and ambient. These are independent effects that are in real systems superimposed on each other. To get a better insight into this phenomenon, a numerical model based on a finite-difference method was developed. The model allows the simulation of the measurement of the thermometer immersion profile and of the use of different bushings, as two of the methods for assessing the thermal effects. The results of the modeling showed that there is an inherent difference between the temperature measured by the thermometer sensor and the temperature at the point of the phase transition, even if the immersion depth was infinite and there was no perturbing heat exchange toward the thermal enclosure and ambient. Nevertheless, in several cases the thermometer would still almost perfectly follow the immersion-profile curve. The only exception is near the bottom of the cell, where a small deviation from the immersion profile was observed. This is in agreement with previously presented experimental results, where this behavior was noticed, but never satisfactorily explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bojkovski, V. Batagelj, M. Hiti, in Proceedings of TEMPMEKO 2004, 9th International Symposium on Temperature and Thermal Measurements in Industry and Science, ed. by D. Zvizdić, L.G. Bermanec, T. Veliki, T. Stašić (FSB/LPM, Zagreb, Croatia, 2004), pp. 245–249

  2. Sakurai H.: Metrologia 33, 395 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  3. Morice R., Bonnier G., Barbaras J.C., Fleurence N., Le Sant V., Ridoux P., Filtz J.R.: Int. J. Thermophys. 29, 1785 (2008)

    Article  ADS  Google Scholar 

  4. V. Batagelj, J. Bojkovski, J. Drnovšek, in Proceedings of TEMPMEKO 2004, 9th International Symposium on Temperature and Thermal Measurements in Industry and Science, ed. by D. Zvizdić, L.G. Bermanec, T. Veliki, T. Stašić (FSB/LPM, Zagreb, Croatia, 2004), pp. 209–214

  5. Le Sant V., Morice R., Failleau G.: Int. J. Thermophys. 29, 1772 (2008)

    Article  ADS  Google Scholar 

  6. Evans J.P., Wood S.D.: Metrologia 7, 3 (1971)

    Article  Google Scholar 

  7. Preston-Thomas H.: Metrologia 27, 3 (1990)

    Article  ADS  Google Scholar 

  8. Hiti M., Bojkovski J., Batagelj V., Drnovšek J.: Meas. Sci. Technol. 16, 2375 (2005)

    Article  ADS  Google Scholar 

  9. D.R. White, T. Dransfield, in Proceedings of TEMPMEKO 2004, 9th International Symposium on Temperature and Thermal Measurements in Industry and Science, ed. by Zvizdić, L.G. Bermanec, T. Veliki, T. Stašić (FSB/LPM, Zagreb, Croatia, 2004), pp. 313–318

  10. White D.R., Ballico M., Chimenti V., Duris S., Filipe E., Ivanova A., Kartal Dogan A., Mendez-Lango E., Meyer C., Pavese F., Peruzzi A., Renaot E., Rudtsch S., Yamazawa K.: CCT/08-19 WG3 on Uncertainties in Contact Thermometry. BIPM, Sèvres Cedex, France (2008)

    Google Scholar 

  11. Sakurai H.: CCT/05-11 Document. BIPM, Sèvres Cedex, France (2005)

    Google Scholar 

  12. Steur P.P.M., Dematteis R.: Metrologia 45, 529 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Batagelj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batagelj, V., Bojkovski, J. & Drnovšek, J. Numerical Modeling of Heat Flux in Fixed-Point Cells Due to the Hydrostatic-Head Effect. Int J Thermophys 32, 2295–2303 (2011). https://doi.org/10.1007/s10765-011-1057-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-011-1057-0

Keywords

Navigation