Skip to main content
Log in

Dielectric and Structural Properties of Bi5Ti3FeO15 Ceramics Obtained by Solid-State Reaction Process from Mechanically Activated Precursors

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Bi5Ti3FeO15 (BTFO), an Aurivillius compound, was synthesized via sintering the Bi2O3 and Fe2O3 mixture and TiO2 oxides. The precursor material was ground in a high-energy attritorial mill for (1, 3, 5, and 10) h. The orthorhombic system Bi5Ti3FeO15 ceramics was obtained by a solid-state reaction process at 1313 K. Phase formation behavior was investigated using differential thermal analysis (DTA), thermal gravimetric (TG), and X-ray diffraction (XRD) techniques. The frequency-dependent properties of the material were investigated by impedance spectroscopy. The impedance spectroscopic method is widely used to characterize electrical properties of materials and their interfaces with electronically conducting electrodes. These studies indicate that 1h, 3h, and 5h primary high-energy ball milling followed by sintering is a promising technique for pure Bi5Ti3FeO15 ceramic preparation, whereas the ceramics obtained from the substrates after 10h milling is a two-phase material. As the result of this investigation, the model of adjusting the Nyquist charts with a three-element R-CPE (constant phase element) series connection was proposed. It was found that the value of the dielectric constant at the Curie temperature decreases when the milling time of the substrates increases. The decrease in the dielectric constant is influenced by the great dispersion of the grains, their dense packing, and location of particular grains in relation to other grains. Moreover, the change of resistivity with frequency indicates that relaxation processes take place in the material. In conclusion, it was reported that the optimal milling time of precursor oxide powders for carrying out the sintering process is equal to 5 h. Then the obtained ceramics contain one phase and exhibit the highest dielectric properties for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lomanova N.A., Morozov M.I., Ugolkov V.L., Gusarov V.V.: Inorg. Mater. 42, 189 (2006)

    Article  Google Scholar 

  2. Aurivillius B.: Arkh. Khemi 1, 499 (1949)

    Google Scholar 

  3. Aurivillius B.: Arkh. Khemi 2, 512 (1950)

    Google Scholar 

  4. Subbarao E.C.: J. Am. Ceram. Soc. 45, 166 (1962)

    Article  Google Scholar 

  5. Subbarao E.C.: Ferroelectrics 5, 267 (1973)

    Article  Google Scholar 

  6. E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Application (Wiley Inc., Hoboken, NJ, 2005), pp. 23–47

  7. Rietveld H.M.: J. Appl. Crystallogr. 3, 65 (1969)

    Article  Google Scholar 

  8. Young R.A., Wiles D.B.: Adv. X-Ray Anal. 24, 1 (1981)

    Google Scholar 

  9. R.A. Young, The Rietveld Method (Oxford University Press, Oxford, 1993), pp. 17–32

  10. Hill R.J., Howard C.J.: J. Appl. Crystallogr. 20, 467 (1987)

    Article  Google Scholar 

  11. Dercz G., Oleszak D., Prusik K., Pająk L.: Rev. Adv. Mater. Sci. 8, 764 (2008)

    Google Scholar 

  12. Dercz G., Rymarczyk J., Prusik K., Hanc A., Pająk L., Ilczuk J.: Arch. Metall. Mater. 54, 741 (2009)

    Google Scholar 

  13. Dercz G., Rymarczyk J., Hanc A., Prusik K., Babilas R., Pająk L., Ilczuk J.: Acta Phys. Pol. A 114, 1623 (2008)

    ADS  Google Scholar 

  14. Chen R.H., Chen L., Chia C.: J. Phys. Condens. Matter 19, 086225 (2007)

    Article  ADS  Google Scholar 

  15. Pastor M., Bajpai P.K., Choudhary R.N.P.: J. Phys. Chem. Solids 68, 1914 (2007)

    Article  ADS  Google Scholar 

  16. Sen S., Pramanik P., Choudhary R.N.P.: Ceram. Int. 33, 579 (2007)

    Article  Google Scholar 

  17. Farea A.M.M., Kumar S., Batoo K.M., Alimuddin A.Y.: Phys. B 403, 684 (2008)

    Article  ADS  Google Scholar 

  18. Wang W., Gu S.P., Mao X.Y., Chen X.B.: J. Appl. Phys. 102, 024102 (2007)

    Article  ADS  Google Scholar 

  19. Barranco A.P., Pinar F.C., Martinez O.P., Guerra J.S., Carmenate I.G.: J. Eur. Ceram. Soc. 19, 2677 (1999)

    Article  Google Scholar 

  20. Macdonald J.R.: Solid State Ionics 176, 1961 (2005)

    Article  Google Scholar 

  21. Moure C.: Ceram. Int. 29, 91 (2003)

    Article  Google Scholar 

  22. Rachna S., Bhattacharyya S., Gupta S.M.: J. Phys. Chem. Solids 69, 822 (2008)

    Article  ADS  Google Scholar 

  23. Macedo Z.S., Ferrari C.R., Hernandes A.C.: J. Eur. Ceram. Soc. 24, 2567 (2004)

    Article  Google Scholar 

  24. Barik S.K., Choudhary R.N.P., Mahapatra P.K.: J. Mater. Sci. Mater. Electron. 19, 607 (2008)

    Article  Google Scholar 

  25. Karthik C., Varma K.B.R.: J. Phys. Chem. Solids. 67, 2437 (2006)

    Article  ADS  Google Scholar 

  26. Kumar S., Varma K.B.R.: Solid State Commun. 146, 137 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Dercz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dercz, J., Starczewska, A. & Dercz, G. Dielectric and Structural Properties of Bi5Ti3FeO15 Ceramics Obtained by Solid-State Reaction Process from Mechanically Activated Precursors. Int J Thermophys 32, 746–761 (2011). https://doi.org/10.1007/s10765-011-0965-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-011-0965-3

Keywords

Navigation