International Journal of Thermophysics

, Volume 31, Issue 8–9, pp 1762–1770 | Cite as

Optical Temperature Measurement Method for Glowing Microcomponents

  • M. ShpakEmail author
  • P. Kärhä
  • M. Ojanen
  • E. Ikonen
  • M. Heinonen


A measurement method and measurement results for the temperature of miniature microbridge emitters integrated on silicon are presented. First, the extinction coefficient of highly doped silicon was measured at high temperatures: a piece of a silicon-on-insulator wafer was heated to several temperatures in a high-temperature furnace, and the emitted spectra were measured using a spectroradiometer with focusing optics. The optical behavior of the sample was modeled with Fresnel equations. The extinction coefficient of silicon was obtained from the model, because other optical properties, the dimensions, and the temperature of the structure were known. An emissivity model was then developed and adapted for the microbridge with the known extinction coefficient values, which allows the temperature to be determined from the measured spectrum. We can now measure optically the temperatures of the microbridges of dimensions 400 × 25 × 4 μm3 in the temperature range 600 °C to 1200 °C with an uncertainty of 100 °C.


Emissivity High temperatures Microbridge Refractive index Silicon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sainiemi L., Grigoras K., Kassamakov I., Hanhijärvi K., Aaltonen J., Fan J., Saarela V., Hæggström E., Franssila S.: Sens. Actuators A 149, 305 (2009)CrossRefGoogle Scholar
  2. 2.
    M. Blomberg, O. Rusanen, K. Keranen, A. Lehto, A Silicon Microsystem—Miniaturised Infrared Spectrometer, in Proceedings of Transducers ‘97, 9th International Conference on Solid State Sensors and Actuators, vol. 2 (IEEE, 1997), pp. 1257–1258Google Scholar
  3. 3.
    Corman T., Kälvesten E., Huiku M., Weckström K., Meriläinen P.T., Stemme G.: J. Microelectromech. Syst. 9, 509 (2000)CrossRefGoogle Scholar
  4. 4.
    Tu J., Howard D., Collins S.D., Smith R.L.: Appl. Opt. 42, 2388 (2003)CrossRefADSGoogle Scholar
  5. 5.
    Fürjes P., Vizváry Z., Ádám M., Morrissey A., Dücső C., Bársony I.: Sens. Actuators A 99, 98 (2002)CrossRefGoogle Scholar
  6. 6.
    H. Yuasa, S. Ohya, S. Karasawa, K. Akimoto, S. Kodato, K. Takahashi, Single crystal silicon micromachined pulsed infrared light source, in Proceedings of Transducers ‘97, 9th International Conference on Solid State Sensors and Actuators, vol. 2 (IEEE, 1997), pp. 1271–1274Google Scholar
  7. 7.
    Lee J., King W.P.: Sens. Actuators A 136, 291 (2007)CrossRefGoogle Scholar
  8. 8.
    Mastrangelo C.H., Yeh J.H., Muller R.S.: IEEE Trans. Electron Devices Lett. 39, 1363 (1992)CrossRefADSGoogle Scholar
  9. 9.
    Satō T.: Jpn. J. Appl. Phys. 6, 339 (1967)CrossRefADSGoogle Scholar
  10. 10.
    Timans P.J.: J. Appl. Phys. 74, 6353 (1993)CrossRefADSGoogle Scholar
  11. 11.
    Jellison Jr. G.E., Modine F.A.: J. Appl. Phys. 76, 3758 (1994)CrossRefADSGoogle Scholar
  12. 12.
    Li H.H.: J. Phys. Chem. Ref. Data 9, 561 (1980)CrossRefADSGoogle Scholar
  13. 13.
    Lee B.J., Zhang Z.M., Early E.A., DeWitt D.P., Tsai B.K.: J. Thermophys. Heat Transf. 19, 558 (2005)CrossRefGoogle Scholar
  14. 14.
    Malitson I.H.: J. Opt. Soc. Am. 55, 1205 (1965)CrossRefADSGoogle Scholar
  15. 15.
    Born M., Wolf E.: Principles of Optics. Cambridge University Press, Cambridge (1999)Google Scholar
  16. 16.
    Shpak M., Sainiemi L., Ojanen M., Kärhä P., Heinonen M., Franssila S., Ikonen E.: Appl. Opt. 49, 1489 (2010)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • M. Shpak
    • 1
    Email author
  • P. Kärhä
    • 1
  • M. Ojanen
    • 1
  • E. Ikonen
    • 1
    • 2
  • M. Heinonen
    • 2
  1. 1.Metrology Research InstituteAalto UniversityAaltoFinland
  2. 2.Centre for Metrology and AccreditationEspooFinland

Personalised recommendations