Skip to main content
Log in

Measurement of the Thermal Conductivity of Nanodeposited Material

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The small size of nanomaterials deposited by either focused ions or electron beams has prevented the determination of reliable thermal property data by existing methods. A new method is described that uses a suspended platinum hot film to measure the thermal conductivity of a nanoscale deposition. The cross section of the Pt film needs to be as small as 50 nm × 500 nm to have sufficient sensitivity to detect the effect of the beam-induced nanodeposition. A direct current heating method is used before and after the deposition, and the change in the average temperature increase of the Pt hot film gives the thermal conductivity of the additional deposited material. In order to estimate the error introduced by the one-dimensional analytical model employed, a two-dimensional numerical simulation was conducted. It confirmed the reliability of this method for situations where the deposit extends onto the terminals by (1 μm or more. Measurements of amorphous carbon (a-C) films fabricated by electron beam induced deposition (EBID) produced thermal conductivities of 0.61 W · m−1 · K−1 to 0.73 W · m−1 · K−1 at 100 K to 340 K, values in good agreement with those of a-C thin films reported in the past.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cahill D.G., Goodson K.E., Majumdar A.: J. Heat Transfer 124, 223 (2002)

    Article  Google Scholar 

  2. Cahill D.G., Ford W.K., Goodson K.E., Mahan G.D., Majumdar A., Maris H.J., Merlin R., Phillpot S.R.: J. Appl. Phys. 93, 793 (2003)

    Article  ADS  Google Scholar 

  3. Huxtable S., Cahill D.G., Fauconnier V., White J.O., Zhao J.-C.: Nat. Mater. 3, 298 (2004)

    Article  ADS  Google Scholar 

  4. Fujii M., Zhang X., Xie H., Ago H., Takahashi K., Ikuta T., Abe H., Shimizu T.: Phys. Rev. Lett. 5, 065502 (2005)

    Article  ADS  Google Scholar 

  5. Takahashi K., Ito Y., Ikuta T., Nishiyama T., Fujii M., Zhang X., Huczko A.: High Temp.–High Press. 37, 119 (2008)

    Google Scholar 

  6. Matsui S., Kaito T., Fujita J., Komuro M., Kanda K., Haruyama Y.: J. Vac. Sci. Tech. 18, 3181 (2000)

    Article  Google Scholar 

  7. Silvis-Cividjian N., Hagen C.W., Kruit P., Stam M.A.J.v.d., Groen H.B.: Appl. Phys. Lett. 82, 20 (2003)

    Article  Google Scholar 

  8. Bret T., Utke I., Hoffmann P.: Microelectron. Eng. 78–79, 307 (2005)

    Article  Google Scholar 

  9. Ding W., Dikin D.A., Chen X., Piner R.D., Wang X., Li X., Ruoff R.S., Zussman E.: J. Appl. Phys. 98, 014905 (2005)

    Article  ADS  Google Scholar 

  10. Nishijima H., Kamo S., Akita S., Nakayama Y., Hohmura K.I., Yoshimura S.H., Takeyasu K.: Appl. Phys. Lett. 74, 4061 (1999)

    Article  ADS  Google Scholar 

  11. Silva S.R.P., Carey J.D.: Diam. Relat. Mater. 12, 151 (2003)

    Article  Google Scholar 

  12. Bullen A.J., O’Hara K.E., Cahill D.G., Monteiro O., von Keudell A.: J. Appl. Phys. 88, 6317 (2000)

    Article  ADS  Google Scholar 

  13. Shamsa M., Liu W.L., Balandin A.A., Casiraghi C., Milne W.I., Ferrari A.C.: Appl. Phys. Lett. 89, 161921 (2006)

    Article  ADS  Google Scholar 

  14. Zhang Q.C., Cao B.Y., Zhang X., Fujii M., Takahashi K.: J. Phys. Condens. Matter 18, 7937 (2006)

    Article  ADS  Google Scholar 

  15. Zhang X., Xie H., Fujii M., Takahashi K., Ikuta T., Ago H., Abe H., Shimizu T.: Int. J. Heat Mass Transfer 49, 3879 (2006)

    Article  MATH  Google Scholar 

  16. Bret T., Utke I., Hoffmann P., Abourida M., Doppelt P.: Microelectron. Eng. 83, 1482 (2006)

    Article  Google Scholar 

  17. Randolph S.J., Fowlkes J.D., Rack P.D.: J. Appl. Phys. 97, 124312 (2005)

    Article  ADS  Google Scholar 

  18. Yamane T., Nagai N., Katayama S., Todoki M.: J. Appl. Phys. 91, 9772 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Takahashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, K., Hilmi, N., Ito, Y. et al. Measurement of the Thermal Conductivity of Nanodeposited Material. Int J Thermophys 30, 1864–1874 (2009). https://doi.org/10.1007/s10765-009-0666-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-009-0666-3

Keywords

Navigation