Skip to main content
Log in

Statistical-Thermodynamics Modeling of Clathrate-Hydrate-Forming Systems Suitable as Working Media of a Hydrate-Based Refrigeration System

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Attempts to develop a novel hydrate-based refrigeration system have been carried out in recent years. It was reported that the vapor/liquid/liquid/hydrate four-phase equilibrium conditions in the systems of cyclopentane and water plus difluoromethane satisfy the required conditions of the working media of a hydrate-based refrigeration system for residential air-conditioning use. When a statistical- thermodynamic model is applied to the above-mentioned hydrate-forming systems, the Kihara potential parameters of these guest substances need to be determined. In this study, an attempt was made to determine the Kihara potential parameters of difluoromethane and cyclopentane based on phase equilibrium data for difluoromethane + water, cyclopentane + water, and difluoromethane + cyclopentane + water systems. The absolute average deviations of the predicted equilibrium pressure at a given temperature from the corresponding experimental values are 0.043 for the HFC-32 + water system, 0.12 for the cyclopentane + water, and 0.031 for the HFC-32 + cyclopentane + water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ogawa T., Ito T., Watanabe K., Tahara K., Hiraoka R., Ochiai J., Ohmura R., Mori Y.H.: Appl. Therm. Eng. 26, 2157 (2006)

    Article  Google Scholar 

  2. Imai S., Okutani K., Ohmura R., Mori Y.H.: J. Chem. Eng. Data 50, 1783 (2005)

    Article  Google Scholar 

  3. Imai S., Miyake K., Ohmura R., Mori Y.H.: J. Chem. Eng. Data 51, 2222 (2006)

    Article  Google Scholar 

  4. Imai S., Miyake K., Ohmura R., Mori Y.H.: J. Chem. Eng. Data 52, 1056 (2007)

    Article  Google Scholar 

  5. Takeya S., Ohmura R.: J. Chem. Eng. Data 52, 635 (2007)

    Article  Google Scholar 

  6. van der Waals J.H., Platteeuw J.C.: Adv. Chem. Phys. 2, 1 (1959)

    Article  Google Scholar 

  7. Parrish W.R., Prausnitz J.M.: Ind. Eng. Chem. Proc. Des. Dev. 11, 26 (1972)

    Article  Google Scholar 

  8. Sloan E.D.: Clathrate Hydrates of Natural Gases, 2nd edn. Marcel-Dekker, New York (1998)

    Google Scholar 

  9. Soave G.: Chem. Eng. Sci. 27, 1197 (1972)

    Article  Google Scholar 

  10. Tee L.S., Gotoh S., Stewart W.E.: Ind. Eng. Chem. Fundam. 5, 363 (1966)

    Article  Google Scholar 

  11. Watanabe K., Imai S., Mori Y.H.: Chem. Eng. Sci. 60, 4846 (2005)

    Article  Google Scholar 

  12. Maczynski A., Shaw D.: J. Phys. Chem. Ref. Data 34, 441 (2005)

    Article  ADS  Google Scholar 

  13. Fan S.S., Liang D.Q., Guo K.H.: J. Chem. Eng. Data 46, 930 (2001)

    Article  Google Scholar 

  14. Tohidi B., Danesh A., Todd A.C., Burgass R.W., Østergaard K.K.: Fluid Phase Equilib. 138, 241 (1997)

    Article  Google Scholar 

  15. Sandler S.I.: Chemical and Engineering Thermodynamics. Wiley, New York (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumihito Takeuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeuchi, F., Ohmura, R. & Yasuoka, K. Statistical-Thermodynamics Modeling of Clathrate-Hydrate-Forming Systems Suitable as Working Media of a Hydrate-Based Refrigeration System. Int J Thermophys 30, 1838–1852 (2009). https://doi.org/10.1007/s10765-009-0661-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-009-0661-8

Keywords

Navigation