Skip to main content
Log in

Effect of Moisture on Thermal Conductivity of Lime-Based Composites

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The effect of moisture content on the thermal conductivity of lime-based composites is investigated both experimentally and theoretically. Experimental measurements of thermal conductivity as a function of moisture content from a dry state to a fully water saturated state are performed using an impulse technique. The obtained experimental data are analyzed at first with fundamental theoretical models, and it is found that they conform to both Wiener’s and Hashin–Shtrikman’s bounds. The thermal conductivity of wet lime-based composites is then analyzed using several homogenization techniques, among them, Lichtenecker’s, Polder and van Santen’s, and Dobson’s formulas. The validity of applied effective-media treatments is assessed comparing the measured and calculated data. Lichtenecker’s equation is found to achieve the best agreement with experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.K. Kumaran, Heat, Air and Moisture Transfer in Insulated Envelope Parts, Final Report, vol. 3, Task 3: Material Properties (IEA ANNEX 24, Acco Leuven, 1996)

  2. D.R. Lide (ed.), CRC Handbook of Chemistry and Physics, 79th edn. (CRC Press, Boca Raton, FL, 1998)

    Google Scholar 

  3. Zuda L., Pavlík Z., Rovnaníková P., Bayer P., Černý R.: Int. J. Thermophys. 27, 1250 (2006)

    Article  Google Scholar 

  4. Lichtenecker K.: Phys. Z. 27, 115 (1926)

    Google Scholar 

  5. Polder D., van Santen J.H.: Physica 12, 257 (1946)

    Article  ADS  Google Scholar 

  6. Looyenga H.: Physica 31, 401 (1965)

    Article  ADS  Google Scholar 

  7. Dobson M.C., Ulaby F.T., Hallikainen M.T., El-Rayes M.A.: IEEE Trans. Geosci. Remote Sensing GE 23, 35 (1985)

    Article  ADS  Google Scholar 

  8. Wiener O.: Abh. Math. Phys. Kl. Königl. Sächs. Ges. Wiss. 32, 509 (1912)

    Google Scholar 

  9. Hashin Z., Shtrikman S.: J. Appl. Phys. 33, 3125 (1962)

    Article  MATH  ADS  Google Scholar 

  10. A. Vimmrová, J. Toman, E. Vejmelková, Complex System of Methods for Directed Design and Assessment of Functional Properties of Building Materials (CTU, Prague, 2007), p. 55

  11. P. Tesárek, E. Vejmelková, J. Toman, A. Vimmrová, Complex System of Methods for Directed Design and Assessment of Functional Properties of Building Materials (CTU Prague 2007), p. 81

  12. Rojas M.F., Cabrera J.: Cem. Concr. Res. 32, 133 (2002)

    Article  Google Scholar 

  13. Jiřičková M., Pavlík Z., Fiala L., Černý R.: Int. J. Thermophys. 27, 1214 (2006)

    Article  Google Scholar 

  14. Rayleigh L.: Philos. Mag. 34, 481 (1892)

    Google Scholar 

  15. Bruggeman D.A.G.: Ann. Phys. 24, 636 (1935)

    Article  Google Scholar 

  16. Moy J.H., King-Cham Chan, Dollar A.M.: J. Food Sci. 36, 498 (1971)

    Article  Google Scholar 

  17. Mňahončáková E., Jiřičková M., Pavlík Z., Fiala L., Rovnaníková P., Bayer P., Černý R., Int. J. Thermophys. 27, 1228 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Černý.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlík, Z., Vejmelková, E., Fiala, L. et al. Effect of Moisture on Thermal Conductivity of Lime-Based Composites. Int J Thermophys 30, 1999–2014 (2009). https://doi.org/10.1007/s10765-009-0650-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-009-0650-y

Keywords

Navigation